
SWAP: Effective Fine-Grain Management of Shared
Last-Level Caches with Minimum Hardware

Support
Xiaodong Wang Shuang Chen Jeff Setter† José F. Martı́nez

Computer Systems Laboratory
Cornell University

Ithaca, NY 14853 USA
http://m3.csl.cornell.edu/

†Dept. of Electrical Engineering
Stanford University

Stanford, CA 94305 USA

Abstract—Performance isolation is an important goal in server-
class environments. Partitioning the last-level cache of a chip
multiprocessor (CMP) across co-running applications has proven
useful in this regard. Two popular approaches are (a) hardware
support for way partitioning, or (b) operating system support
for set partitioning through page coloring. Unfortunately, neither
approach by itself is scalable beyond a handful of cores without
incurring in significant performance overheads.

We propose SWAP, a scalable and fine-grained cache man-
agement technique that seamlessly combines set and way parti-
tioning. By cooperatively managing cache ways and sets, SWAP
(“Set and WAy Partitioning”) can successfully provide hundreds
of fine-grained cache partitions for the manycore era.

SWAP requires no additional hardware beyond way parti-
tioning. In fact, SWAP can be readily implemented in existing
commercial servers whose processors do support hardware way
partitioning. In this paper, we prototype SWAP on a 48-core
Cavium ThunderX platform running Linux, and show average
speedups over no cache partitioning are twice as large as those
attained with hardware way partitioning alone.

I. INTRODUCTION

Performance isolation is an important goal in server-class
environments for a variety of reasons, including throughput,
quality of service, and even security. Partitioning last-level
caches in chip multiprocessors (CMPs) across applications is
a popular approach to reducing or eliminating interference
across applications co-running on a CMP. It is a mecha-
nism that can help (1) maximize resource utilization and
system throughput, or trade off throughput vs. fairness [42],
[43]; (2) provide quality-of-service (QoS) for latency critical
workloads [25]; (3) protect the system from timing channel
attacks, where a malicious program is able to steal the secure
information of another application, such as the encryption
key, by sharing the last-level cache [5]. A few approaches
to partitioning the cache space have been proposed.

Way partitioning allows cores in chip multiprocessors
(CMPs) to divvy up the last-level cache’s space, where each
core is allowed to insert cache lines to only a subset of the
cache ways. It is a commonly proposed approach to curbing
cache interference across applications in chip multiprocessors
(CMPs) [30]. Unfortunately, way partitioning is proving to

be not particularly scalable, as it affects cache latency and
power negatively, eventually becoming impractical. Consider
that multiple current and upcoming server chip multiprocessor
(CMP) lines already comprise twenty, thirty, or even more
cores; examples include Intel’s 22-core E5-2600 v4, IBM’s
24-core Power-9, Cavium’s 48-core ThunderX, or Qualcomm’s
64-core Hydra. Although some of these processors do include
hardware support for way partitioning, the granularity is too
coarse to allow for separate partitions for more than a handful
of applications. Cavium’s ThunderX processor, for example,
possesses 48 cores, however its last-level cache is limited to
“only” 16 ways. Similarly, Intel’s v4 CMP allows for no more
than 20 different partitions across 22 cores.

Another approach to achieving cache partitioning is to
restrict each application’s page frames to certain “colors” (the
shared bits between a physical address’ page frame ID and
cache index). In this case, page frames of each color map onto
a specific subset of the cache sets. Although this approach has
been adopted in real operating systems [22], [24], [46], it also
does not scale beyond a handful of colors.

A few architectural mechanisms for probabilistic fine-grain
cache partitioning have been proposed [26], [34], [41]. How-
ever, these implementations require extra hardware support, do
not provide true isolation, and have not yet been adopted in
any commercial CMP to our knowledge.

Contributions

We propose SWAP, a fine-grained cache partitioning mech-
anism that can be readily implemented in existing CMP sys-
tems. By cooperatively combining the cache way (hardware)
and set (OS) partitioning, SWAP is able to divide the shared
cache into literally hundreds of regions, therefore providing
sufficiently fine granularity for the upcoming manycore pro-
cessor generation.

We implement SWAP as a user-space management thread
on Cavium’s ThunderX, a server-grade 48-core processor with
ARM-v8 ISA [39]. To enable SWAP, we introduce small
changes to the Linux page allocator, and leverage ThunderX’s
native architectural support for way partitioning.

Our results show that SWAP improves system throughput
(weighted speedup) by 13.9%, 14.1%, 12.5% and 12.5% on
average for 16-, 24-, 32- and 48- application bundles with
respect to no cache management. This is twice as much
speedup as what we can obtain by using only ThunderX’s
way partitioning mechanism.

To our knowledge, SWAP is the first proposal of a fine-
grained cache partitioning technique that requires no more
hardware than what’s already present in commercial server-
grade CMPs.

The paper is organized as follows: Section 2 provides
background and comments on related work. Section 3 de-
scribes SWAP’s mechanism and design challenges. Section 4
discusses the hardware and software implementation. Section
5 explains our evaluation framework, and Section 6 evaluates
our proposal.

II. BACKGROUND AND RELATED WORK

A. Way Partitioning

In the single core environment, Albonesi is believed to
be the first to propose turning off unneeded cache ways to
reduce cache energy [1]. Yang et al. improve such technique by
dynamically adjust the active cache capacity to accommodate
the changing working set of an application [44], [45].

In the multicore context, Suh et al. [38] propose to distribute
L2 cache ways to minimize the overall miss rate. Qureshi and
Patt [30] improve their technique by predicting the marginal
utility of additional cache ways.

Way partitioning is a desirable approach because: (1) each
core can be assigned an independent slice of the cache
space, thereby reducing cache interference among co-running
applications; (2) adjusting allocations is relatively inexpensive
and can be accomplished lazily (i.e., cache lines in ways no
longer part of an application’s partition can still be accessed
in place, until they are evicted). As a result, chip manufac-
turers have begun to adopt such a technique into their server
processors [15].

Despite all these advantages, a well-known limitation of
way partitioning is that it cannot by itself support more than
a handful of applications at a time [33]. This is because
cache associativity cannot scale easily with number of cores,
as physical constraints result in increased latency and energy
consumption.

B. Page Coloring

Page coloring [40] has been extensively used in industry
and research community to improve the performance of the
memory hierarchy. Kessler and Hill were among the first to
use page coloring to improve the utilization of hardware cache,
by distributing the physical pages evenly to different cache
sets [19]. Such technique was later adopted by commercial
OS such as FreeBSD [12]. A number of follow-up works
further improve the cache utilization, and reduce the overhead
of page recoloring [35]. For multi-core chips, Lin et al. [22]
use page coloring to partition the shared cache among the
cores in a dual-core chip to improve system efficiency. There

page frame number page offset

16 bits

offset LLC index

7 bits13 bits

Bank
index

32 bits

tag

28 bits

Color
bits

Fig. 1: Example of physical address mapping for page color-
ing, corresponding to Cavium’s 48-core ThunderX architecture
used in this study.

are also proposals to use page coloring to partition memory
banks [23], [47], or even to manage cache and memory
contention cooperatively [24].

Instead of partitioning the cache “vertically” as in way
partitioning, page coloring partitions the cache “horizontally”
by sets. When an application requests a new page from the
system, the OS will select a free page from its memory
pool, and map the application’s virtual address to the physical
address of the page. In doing so, the OS may select a page
frame whose page frame number (PFN) is of the appropriate
“color”—the overlapping bits between the page frame number
and last-level cache’s set index (Figure 1). By constraining the
color bits of the pages belonging to an application in this way,
the OS may constrain an application’s cache use to a subset
of the cache sets.

Unfortunately, page coloring is hardly scalable, and it can
incur significant overheads if recoloring is needed. Consider,
for example, that a PFN’s default size of 64KB allows for
four color bits in Cavium’s 48-core ThunderX (Figure 1).
Sixteen colors is hardly sufficient to provide adequate isolation
across 48 cores. One might consider reducing the page size
to increase the number of colors, however this is typically
counterproductive in the server market [16].

Even if a small page size were practical, page coloring
still may not be able to provide fine granularity by itself: A
well-known limitation of page coloring is that, by imposing
page color restrictions on an application, only a portion of
the system memory is accessible to this application [48]. This
may result in an out-of-memory (OOM) error, even though the
system may be awash with pages of other colors.

Finally, re-partitioning the cache space by page coloring
is a costly process: If a page color is taken away from one
application, all the associated page frames have to be migrated
to page frames in the application’s other colors, the appropriate
TLB and cache entries flushed, etc.

C. Probabilistic Cache Partitioning

To address the scalability issue, Sanchez and Kozyrakis
propose Vantage [34], a replacement-based partitioning mech-
anism that can probabilistically guarantee the size of par-
titions across applications. Wang and Chen [41] adopt a

similar approach to maintaining a partition’s cache size, by
controlling the eviction priority of cache lines belonging to
different cores. Although their simulation-based evaluations
show promise, both proposals require a non-trivial amount of
additional hardware support. For that same reason, their results
cannot be validated by real implementations using commercial
processors, where significant discrepancies could arise [22].
Finally, it is unclear whether these probabilistic approaches
would be good enough for environments where strict isolation
is highly desirable (e.g., to reduce exposure to timing channel
attacks).

D. Cache Partitioning for Tile-based CMPs

In tiled-based architectures, each cache tile constitutes the
primary container for the local core, and thus a natural
partition exists. Lee et al. propose CloudCache [21], which
explores allocating partitions potentially larger than tiles by
“borrowing” cache ways from remote tiles. Beckmann and
Sanchez propose Jigsaw [4], which improves upon Cloud-
Cache by favoring neighboring tiles, so as to minimize on-chip
network latency.

However, tile-based architectures are still hard to come by,
and tile-based caches present design challenges of their own.
The fact is, most commercial CMPs with 20+ cores still imple-
ment a centralized (albeit banked) last-level cache organization
(e.g., Intel’s Xeon, IBM’s Power and Blue Gene/Q, Cavium’s
ThunderX, etc.) Moreover, as in the case of probabilistic ap-
proaches, both techniques again introduce a non-trivial amount
of hardware overhead, and they have yet to be supported in
the commercial processors. This makes validation of simulated
results very difficult.

III. MECHANISM

SWAP combines both set and way partitioning so that we
can partition the shared last-level cache in a two-dimensional
manner into many tens or even hundreds of regions, and
then assign those regions to running applications. In Cavium’s
ThunderX 48-core processor, for example, the number of
cache ways and possible page colors is 16 each. Therefore,
ThunderX’s shared L2 cache can be partitioned into 256
independent regions. Note that, theoretically, assignments may
be chosen to overlap, but there is sufficient granularity to keep
them disjoint, which is generally preferable.

A. Challenges

Although combining set and way partitioning to enable
fine-grained cache partitions may be intuitive, in practice
several important challenges needed to be addressed to make
it practical. We discuss these next.

Partition placement. Correctly allocating a partition involves
more than just picking the right size. On the one hand,
partitioning by cache ways and page colors constrains the
possible shapes and sizes of each cache partition. For example,
in the ThunderX processor, it is infeasible to create a partition
of 17 cache regions in the L2 cache with 16 ways and 16
colors. On the other hand, given a desired partition size, there

������
������
������

������
������
�����������

�����
�����

�����
�����
�����

P1

P3P2

Fig. 2: An example of misaligned cache partitions that, on the
one hand, leaves some cache space unassigned while, on the
other hand, it forces some assignments to overlap.

are multiple possible combinations of sets and ways to form
a rectangle with that size. For example, 4 × 4, 2 × 8, and
1 × 16 allocations all offer the same capacity. Even if the
partition size and shape of each application is feasible and
known, placement of the partitions is a challenge in its own
right.

Figure 2 shows an example of partitions that are not
successfully placed. Due to the poor alignment, there is some
wasted cache space on the top right corner, and overlapping
between partitions of P1 and P3, resulting in cache interference
between the two. As part of our proposed solution, we describe
later how we optimize the choice of partition placement.

Memory Pressure. As discussed in Section II, page coloring
not only limits the number of cache sets an application
can use, but also the amount of physical memory that it
can access. The memory system could be awash with free
physical frames of a particular color, and yet those would
not be available to other applications that have been assigned
a different color. Because SWAP employs page coloring, it
is potentially subject to this problem. Although many colors
potentially enable a fine-grain management of cache set allo-
cations, it constrains each application to a small slice of the
physical memory. Fortunately, this is not a major concern for
SWAP, because SWAP adopts a coarse-grained page coloring
technique, achieving fine granularity by combining it with
way partitioning. In the ThunderX platform we study, for
example, each page color covers 4GB of the 64GB available
main memory, and we assign at least two page colors to each
application (Section III-B). As a result, we never observed
out-of-memory exceptions in any of our experiments.

Recoloring Overhead. Another major concern of page coloring
is the potentially heavy cost associated with dynamic recol-
oring. When a color is taken away from an application, for
example, all the pages with that color from that application
have to be remapped across the remaining assigned colors.
Page remap operations are cumbersome: they involve TLB and
cache flushes, a page copy from its old memory location to the
new one, and an update of the corresponding page table entry.
Although efforts have been made to alleviate such overhead,
for example by performing “lazy” page migration, recoloring
overheads are generally non-negligible [22]. Therefore, SWAP
needs to be carefully designed to avoid giving/taking away
colors to/from applications whenever possible.

Increased Conflict Misses in Way Partitioning. One disadvan-
tage of cache way partitioning is that it reduces the effective
cache associativity of each partition, potentially increasing the
number of conflict misses [34], [41]. Because SWAP inherits

this disadvantage, we investigate the relationship between
execution time and the number of cache ways in the context of
our experimental setup (Section V), by statically sampling 30
different cache way+color configurations, with {1, 2, 4, 8, 12,
16} cache ways and {2, 4, 8, 12, 16} page colors. As a result,
the effective cache capacity ranges from 128KB to 16MB. We
find that, if the cache partition is formed by only one cache
way, the number of conflict misses increases dramatically, and
therefore the application’s execution time suffers by up to 40%
increase. On the other hand, for most applications, as long as
their assigned partition has more than two cache ways, their
performance is largely determined by the size of the assigned
partition.

B. Algorithm

We propose a cache allocation mechanism to address these
challenges. The mechanism starts by collecting the miss-
ratio curve (MRC) of each application. The way the MRC
is collected, whether using offline data or an online profiler,
is orthogonal to the mechanism and has been addressed
elsewhere [8]–[10], [30]. It then runs the lookahead algorithm
proposed by Qureshi and Patt [30] to decide the optimal parti-
tion size of each core (in the unit of cache regions), so that the
sum of partition size of each core is the total cache capacity.
Note that we guarantee 2 regions of cache space (128KB)
for each core. More details will be explained in Section V.
Note that the lookahead algorithm only determines the size of
each partition given the total cache capacity, not how these
are achieved in terms of ways vs. colors; this will be decided
later by our placement algorithm, which we describe next.

1) Cache Partition Placement: An ideal partition should
satisfy the following requirements: (1) partitions are aligned
well with each other, without any wasted or overlapping cache
regions, and (2) dynamic resizing should affect the fewest
number of partitions during phase changes.

In SWAP, cache partitions are classified into multiple
coarse-grain classes according to their size. Those in the same
class are given the same number of colors, because if the size
of a partition changes within a range, the number of colors
it is given remains unchanged, so that the partition may be
able to keep its original page colors to avoid high-overhead
recoloring. The general classification criterion, for K colors
(K = 16 in ThunderX) and S cache size (16MB in ThunderX),
is as follows: (1) partitions of size larger than or equal to
S/4 is afforded all K colors; (2) partitions whose size lies
within [S/8, S/4) are allowed K/2 colors; (3) partitions that
fall within [S/16, S/8) are assigned K/4 colors; (4+) and
so forth, down to a minimum of two colors. In the case of
ThunderX, this comprises four classes Ci, i ∈ {16, 8, 4, 2},
where i represents the number of colors of that class.

For placement, partitions with more colors are placed first
and to the “left” (as represented by a rectangle of set rows
by way columns) of partitions with fewer colors. Let us use
an example (illustrated by the top row of Figure 3) to explain
how this placement policy, combined with the classification
criterion, can solve the alignment issue. In this example, P1

0
0
0
0
0
0
0
0

5
5
5
5
5
5
5
5

8
8
8
8
5
5
5
5

8
8
8
8
8
8
8
8

P1 P1 P1
P2

P3

P2

0
0
0
0
0
0
0
0

P1
P2

2
2
2
2
0
0
0
0

P1

3
3
3
3
1
1
1
1

3
3
3
3
1
1
1
1

P3’

8×6=48

P2
’

4×2=8

P1
’

4×2=8
0
0
0
0
0
0
0
0

P1
P3

P2

9
9
9
9
7
7
7
7

8
8
8
8
8
8
8
8

8
8
8
8
8
8
8
8

8 ways

8
co

lo
rs

8×5=40 4×3=12

4×3=12

P3’

P1
’

P3’ P3’

P1
’

P2
’

(a1) (a2) (a3) (a4)

(b4) (b3) (b2) (b1)

(c1) (c2) (c3) (c4)

Fig. 3: A sample process of placing partitions based on their
sizes and classes. The figure assumes eight colors and eight
ways. The top row show an initial partition; center and bottom
rows show the process of dynamically repartitioning based on
changing application demands.

is an 8-color-class partition, and P2 and P3 are both 4-color-
class partitions. Because P1 has more colors, it will always be
placed to the left of P2 and P3. Thus, the right boundary of
P1 and the left boundary of P2 and P3 are aligned.

Based on these two policies, the placement algorithm works
as follows:

1. Each color maintains a “usage” counter (initialized to 0, as
is shown in step a1 of Figure 3), which measures the number
of cache ways of that color which have been already assigned.

2. The partitions are first classified into different classes
according to the criteria mentioned above. Then the number
of cache ways is trivially computed, by dividing the partition
size by the number of colors, rounded down to an integer (not
necessarily a power of 2).

3. We start placing the cache partitions from the ones with
the larger partition sizes to the ones with smaller sizes. For
each partition, SWAP tries to find a set of consecutive colors
with as little usage as possible. After the set of colors is
determined, the partition will update the usage counter of its
assigned colors, and the algorithm will move on to the next
partition. Step a2 to a4 of Figure 3 shows such an example
with 8 cache ways and 8 colors, and the sizes of the three
partitions, P1, P2, and P3, are 40, 12, and 12, respectively.
Because P1 is the largest partition and is allocated more than
half of the available regions, it is a C8 partition, and is assigned
all 8 colors according to the classification criterion. The usage
counter of all the colors are updated to 5, since P1 receives
five ways. The system then picks the top four colors for P2
(P2 is in class C4), and it increases their usage counter by 3
each (the number of ways allocated to P2). When looking to
place P3 in class C4, the least used colors are picked, again
in this case updating their counter to 3 each, since that is the

number of ways allocated to P3 as well.

4. If a core is given the minimum cache space (2 regions),
SWAP assigns one way and two colors to it, which may
significantly hurt its performance due to conflict misses. As
a result, in that case we may horizontally coalesce two or
more minimum-sized partitions, using the same set of colors.
Although colescing may introduce some interference, we
experimentally observe that it greatly reduces conflict misses
(and that this kind of applications are often cache-insensitive
anyway).

C. Reducing Recoloring Overhead

Our algorithm for recoloring strives to minimize color re-
assignments. Specifically: (1) if a partition stays within its
class, it should stick with its prior color assignment; (2) if a
partition is downgraded to a class with fewer colors, its new
colors should be a subset of its prior color set, so that only
the “orphaned” pages need to be migrated; (3) if a partition is
upgraded so that more colors are made available to it, it should
attempt to add the set of colors that have the least “pressure”
(smallest usage counter) at the time the partition is (re)placed.
We continue to use Figure 3 (middle and bottom rows) to show
this repartitioning process, where the sizes of P1, P2, and P3
and changed from 40, 12, 12 regions, respectively, to 8, 8, and
48 regions.

1. The partitions are classified into different classes as before.

2. Before placing the partitions, we first reset the usage counter
(step b1), and then estimate new usage for each color as
follows: (1) If a partition (P3 in the example) is upgraded
to the class with more colors, we do not increase the usage of
any color, as is shown in step b2 of Figure 3. This is because
the new partition will explicitly seek to expand into the least
used colors. (2) If a partition stays in the same class (P2), we
increase the usage of each color by the number of ways the
partition will receive (step b3), so that these cache ways of that
color are reserved. (3) If the partition’s class is downgraded
(P1), the estimated new usage of the colors it currently maps
to is increased by the number of cache ways the partition
will receive, multiplied by the ratio of new to old number of
colors for that partition. For example, P1 previously owned
all 8 colors in Figure 3, it is now downgraded to a 4-color
class. The usage counter of colors 0-7 will be updated by the
number of ways the new partition will receive, multiplied by
0.5. The rationale here is that the new partition will subset all
former colors with equal probability, so on average each such
color will see its usage affected equally and proportionally to
the new allocation. (Recall that at this point we still do not
know which colors will be picked.)

3. We start placing the cache partitions from the ones with
larger sizes to the ones with smaller sizes, following the
original algorithm, only that the expected usage is already
initialized as explained above, and thus not computed from
zero, but adjusted (see below) during actual placement. For
example, in step c3 of Figure 3, we assign colors 4-7 to

the downgraded partition P1 because those colors are of less
usage. Notice that P1 avoids occupying the colors 0-3, which
are “reserved” by P2. As a result, P2 can re-use the same
colors it had before. After placing the partition, usage for each
color is adjusted to reflect the actual usage by that partition, by
compensating with respect to the estimated usage previously
calculated and accounted for, as is shown in step c3.

Note an exception for this process is made that if a partition,
whose class is either unchanged or downgraded, finds the
expected usage of its previously assigned colors high enough
that the partition may not be able to get the number of cache
ways it needs to fit completely. In that case, we allow the
partition to move to a new set of colors that can accommodate
its size (if one exists); specifically, the partition will seek to
move to a set with minimum calculated usage.

IV. IMPLEMENTATION

In this section we describe the existing hardware support
that we leverage to implement SWAP, the software changes
that we make to the operating system, and the interaction
between them.

The ThunderX 48-core CMP is an ARM-based processor
aimed at the server/datacenter market. It provides the ability
to allocate the shared L2 cache by cache ways, up to 16
partitions. ThunderX provides a special register per core,
which specifies the cache ways that a core can insert cache
lines into. (Cores can still access lines in any cache way.) Once
cache ways are assigned to cores (see Section III-B), SWAP
configures the per-core registers so that the assignment may
be enforced.

In order to further partition the cache by sets, we implement
page coloring [22], [24], [47] in the Linux kernel that runs
on the ThunderX system, by modifying its buddy memory
allocator to fit our needs. We color user pages only; kernel
pages are allocated using Linux’s default mechanism.

In the buddy system, free physical pages are stored in multi-
level free lists, where the kth-order free list contains pages
which is composed of 2k consecutive 64KB pages. We create
multiple bins out of each list, with each bin caching pages of
a specific color.

When a page fault occurs to a user application, the kernel
first selects a page color in a round-robin fashion among all
the allowable colors for that application. Then, it fetches a
page of that color. When a bin is running out of pages, SWAP
requests more free pages from the Linux buddy system and
uses them to refill the bins.

A potential issue with page coloring is that some of modern
processors adopt hashed indexing, where the index to the last-
level cache is XORed with bits in the physical address [23].
Fortunately, because the physical address of a free page is
readily available in the kernel, its color can be easily computed
by hashing the appropriate bits.

SWAP works well with the large page sizes often found in
server settings–in ThunderX’s case, 64KB. It can also work
well with smaller page sizes (e.g., standard 4KB pages), as
long as the number of bits assigned for coloring is kept small,

TABLE I: CMP configuration.

ThunderX CN8800 [2], [6]
Number of Cores 48

Frequency 2.0GHz
L1 ICache 78 kB,

128B cache line size
L1 DCache 32 kB,

128 cache line size
L2 Cache 16 MB, 16-way set associative,

128B cache line size
Memory Controller 64GB, 4 channels, DDR4 2133,

aggressive bank reordering

to skirt the issues of memory pressure and recoloring overhead
described before. SWAP as is would not be able to leverage
page coloring for very large “superpage” sizes supported in
some architectures (e.g., 512MB for ThunderX), as the page
offset would be very long, and therefore there would be
no overlap between the page number and the cache index.
Very large superpages are usually relegated to the uncommon
case of servers with terabytes of physical memory [17], and
produce undesirable side effects [11], [18], [20], [27], [29].
For example, database vendors often recommend users to turn
off large superpage support [20], [27], because many database
workloads tend to exhibit sparse rather than contiguous mem-
ory access patterns. Large superpages may also cause the
system to run out of memory [11].

We follow a lazy approach to page migration for dynamic
recoloring [22]: When a color is added to or taken away
from an application, we eagerly walk through the application’s
page table and redistribute the application’s pages across the
colors assigned to it. For each page marked for migration to a
different color, we reset the access flag (AF) in the page table
entries (PTE) of the application’s pages of that color, and set
one other unused bit in each such PTE (we call it the Pending
bit). Naturally, the corresponding TLB and data cache entries
are also flushed. However, the application’s marked pages are
not immediately migrated. Rather, as pages for that application
with AF=0 are accessed (which generates a page fault), if the
Pending is set, the page will be migrated to its new color at
that point (and the Pending bit will be reset). Then, the AF
bit will be set, and the page fault handler will complete.

V. EXPERIMENTAL SETUP

A. Hardware Platform

We evaluate SWAP on a Cavium ThunderX CN8800 rack
server. The configuration of the processor is shown in Table I.

ThunderX supports hardware cache way partitioning, as is
described in Section IV. We also develop a set of microbench-
marks similar to what Saavedra et al. [32] propose to verify the
specifications related to the memory hierarchy (cache capacity,
associativity, etc).

In addition, we check whether there is an overlap between
the color bits and the memory channel and bank bits, as page
coloring may restrict a core’s accessibility to the memory
channels/banks. To do this, we run the microbenchmarks

TABLE II: Multiprogrammed workloads evaluated for simula-
tion. Combining cache-insensitive (I), cache-sensitive (S), and
thrashing (T) applications.

MP1 vpr - twolf - art - lbm S4

vpr - ammp - bzip2- libquantum S2T 2

MP2 milc - soplex - lbm - art T 4

leslie3d - bwaves - GemsFDTD - bzip2 T 2S2

MP3 vpr - twolf - milc - libquantum S4

ammp - bzip2 - bwaves - soplex T 4

MP4 mcf - milc - libquantum - leslie3d T 4

bwaves - GemsFDTD - twolf - swim T 4S2

MP5 mcf - soplex - libquantum - leslie3d T 4

bwaves - lbm - swim - art T 2S2

MP6 gamess - hmmer - milc - mcf I4

tonto - h264ref - lbm - art T 2S2

MP7 twolf - art - leslie3d - bwaves S4

bzip2 - mcf - GemsFDTD - libquantum T 4

MP8 vpr - twolf - libquantum - milc S4

ammp - art - mesa - sixtrack T 2I2

MP9 twolf - vpr - lbm - libquantum S4

bzip2 - omnetpp - mesa - gobmk T 2I2

MP10 milc - soplex - h264ref - vpr T 4

libquantum - leslie3d - perlbench - mcf S2I2

proposed by Yun et al. [47] to detect the location of those
bits, and we find that the memory channel and bank bits reside
within the page offset, and therefore there is no overlap with
the color bits.

B. Software Platform

We prototype SWAP in the ThunderX platform running
Ubuntu Trusty Tahr 14.04 with kernel version 3.18.0. SWAP
runs as a user space management process, which includes (1)
the algorithm described in Section III-B to decide the allow-
able cache region of each application; (2) the ability to write
hardware registers to reconfigure cache way partition, and to
interact with the underlying Linux kernel for page coloring
(the implementation details are described in Section IV); and
(3) a performance tracking thread which is triggered every 2
seconds to read hardware performance counters, such as the
number of L2 cache misses.

C. Workload Construction

We use a mix of 22 applications from SPEC2000 [36]
and SPEC2006 [37] to create multiprogrammed workloads
for evaluation. Each application is compiled natively to an
ARM executable, using gcc 5.1.0 with -Ofast optimization. We
classify the 22 applications into Cache-sensitive (S), Cache-
insensitive (I), and Thrashing (T) using offline profiling, and
then create ten 8-application bundles that consist of a mix of
applications from these three categories, as shown in Table II.
When the number of active cores exceeds the number of
applications in a bundle, the bundle is replicated across the
chip. For example, 4 copies of MP1 would run in a 32-core
configuration.

SWAP needs an estimate of the application’s cache miss
rate vs. capacity curve (MRC), which is used by the looka-
head algorithm to produce the optimal size of each partition
(described in Section III-B). In server-class environments,
profile information can be obtained efficiently in a variety

of ways, as addressed elsewhere [8]–[10]. Alternatively, it
could be collected using additional hardware support (e.g.,
UMON [30]). In this paper, we use the applications’ miss-
per-kilo-cycle (MPKC) profile, by sampling 30 different cache
way+color configurations, with {1, 2, 4, 8, 12, 16} cache ways
and {2, 4, 8, 12, 16} page colors (the effective cache capacity
ranges from 128KB to 16MB).

Besides SPEC, we also use a latency critical workload mem-
cached from Cloudsuite [14], to study how SWAP guarantees
QoS. Due to the lack of 10Gbit Ethernet support, we run
the memcached server and clients on the same chip to avoid
Ethernet becoming the bottleneck. Although packets are not
physically transmitted via Ethernet, they still go through most
of the OS networking layers, and therefore the cache behavior
of the memcached server remains the same. In addition, in
order to guarantee isolation between clients and server, we
allocate 2 exclusive cache ways to all the client threads, which
we find is good enough to issue requests in a timely manner.
As recommended by Cloudsuite, we run one instance of the
memcached server with 4 threads, and the QoS target is set
such that 95% of the requests are serviced within 10ms [7].
The memcached client runs with 8 threads, and we configure
the issue rate to 190K requests per second1.

D. Performance Metrics

We use weighted speedup and L1 miss latency to eval-
uate our fine-grained cache partition, both of which can
be obtained by SWAP’s performance tracking thread de-
scribed above. Weighted speedup measures the overall system
throughput [13]. It is the arithmetic mean of the ratio between
IPC shared

i and IPC alone
i for all applications i, where IPC shared

i

is the IPC obtained while running application i in a loaded
system, and IPC alone

i is the IPC when running unmolested.
We also use L1 miss latency to show the source of per-

formance improvement. L1 miss latency directly correlates
with the number of cycles that processor pipeline is stalled
by long latency memory operations, and is computed as
L2 access latency + L2 miss rate × memory latency. An ef-
fective cache management technique should not only decrease
the L2 miss rate of each application, but also reduce the
overall memory contention, which further improves the L1
miss latency, and thus the IPC.

VI. EVALUATION

We evaluate our SWAP proposal against a Baseline con-
figuration, where the shared L2 cache is freely contended by
all 48 cores. We also compare SWAP with a best-effort cache
way partitioning (WAY) and page coloring technique (SET).

Our evaluation is done in four scenarios: First, we study the
case of static partitioning, where cache repartitioning is not
needed. Second, we study a scenario with real-time evolving
workloads, with applications coming and going, and where
the dynamic cache partitioning is involved to react to the
changing cache demands. We also study the overhead of the

1We find that 190K is the maximum issue rate for the memcached server
to meet its QoS target even if it is given the entire cache.

dynamic SWAP in the ThunderX platform. Third, we study
how SWAP guarantees the quality of service (QoS) of latency-
critical workloads, and improves the throughput of background
batch applications at the same time. Note that all of the above
experiments are done on a real ThunderX rack server. Finally,
we compare SWAP with recently proposed probabilistic cache
partitioning in the simulator.

A. Static Partitioning

In the static partitioning experiments, we run SWAP on
16, 24, 32 and 48 cores of a ThunderX 48-core processor,
with the applications bundles detailed in Section V-C. SWAP
first reads the MPKC profile of each application, and then
computes the size, shape, and placement of each core’s cache
partition in the shared L2, based on the algorithm discussed
in Section III-B. When an application finishes before the whole
bundle has finished, the same application is again instantiated
on the same core. It naturally inherits the cache partition of
the core, and therefore no repartition is needed. When all
the applications have finished at least once, we kill all the
processes and conclude the experiment. The purpose of this
experiment is to measure the partitioning quality of SWAP.

We first compare SWAP with Baseline (no cache partition-
ing involved), and the results are shown in Figure 4. SWAP
consistently outperforms Baseline for all the bundles in all
configurations, and the improvement does not decrease with
more active cores, showing a good scalability in large-scale
CMPs. On average, SWAP improves system throughput over
Baseline by 13.9%, 14.1%, 12.5%, and 12.5%, respectively,
for 16-, 24-, 32-, and 48-core configurations. We also find
that on average, SWAP reduces the chip’s overall L1 miss
latency by 31.3%, 30.1%, 25.7%, and 17.6% for the core
configurations we study.

We also compare SWAP with utility-based way partitioning
(WAY) [30] and page coloring technique (SET) [22]. Because
there are only 16 cache ways or page colors in ThunderX, it is
impossible to give a disjoint cache partition to each application
in either mechanism, if the number of active cores is larger
than 16. We therefore design a variation of way partitioning
that allows for judicious sharing of cache ways for larger
configurations as follows:

We begin by reserving a small number of cache ways as
the “dump area.” Then, we run Qureshi and Patt’s lookahead
algorithm [30] to allocate the remaining cache ways. The
lookahead algorithm iteratively finds the application that has
the highest marginal utility on cache capacity, and assigns the
cache ways to it. We run such algorithm until all the cache
ways are allocated (except for the “dump” area). Then, all
the remaining applications are assigned the “dump” area. In
addition, as discussed in Section III-A, a partition with one
cache way usually introduces an excessive number of conflict
misses, hurting the application’s performance. As a result, we
adopt an approach similar to what Liu et al. propose [24],
which coalesces the neighboring partitions if one of the them
has only 1 cache way. Such coalescing rule greatly helps

95 %

100 %

105 %

110 %

115 %

120 %

125 %

130 %

135 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG
30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

110 %
W

ei
gh

te
d

S
pe

ed
up

WAY SET SWAP WAY SET SWAP

(a) 16 cores

95 %

100 %

105 %

110 %

115 %

120 %

125 %

130 %

135 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG
30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

110 %

N
or

m
al

iz
ed

 L
1

M
is

s
La

te
nc

y

WAY SET SWAP WAY SET SWAP

(b) 24 cores

95 %

100 %

105 %

110 %

115 %

120 %

125 %

130 %

135 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG
40 %

50 %

60 %

70 %

80 %

90 %

100 %

110 %

120 %

W
ei

gh
te

d
S

pe
ed

up

WAY SET SWAP WAY SET SWAP

(c) 32 cores

95 %

100 %

105 %

110 %

115 %

120 %

125 %

130 %

135 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG
40 %

50 %

60 %

70 %

80 %

90 %

100 %

110 %

120 %

N
or

m
al

iz
ed

 L
1

M
is

s
La

te
nc

y

WAY SET SWAP WAY SET SWAP

(d) 48 cores

Fig. 4: Comparison of system throughput (weighted speedup) and L1 miss latency for Baseline, WAY, SET and SWAP. Both
weighted speedup and L1 miss latency are normalized to Baseline. The bars show the weighted speedup, while the lines show
the L1 miss latency normalized to baseline.

reduce conflict misses, and we find it significantly improves
the performance of WAY.

We also study the effect of varying the size of the “dump
area” from 2 to 6MB. We find that in general, the “dump
area” should be as small as possible. For 16, 24, and 32 cores,
reserving 2 ways performs the best. However, for 48 cores,
reserving 4 ways produces the most speedup because there
are more than 30 applications in such “dump area.”

Our coarse-grained page coloring scheme (SET) works
similarly to WAY. However, because constraining the page
colors also limits the amount of physical memory accessible
by the applications, more colors should be reserved to avoid an
out-of-memory error (OOM). Our study shows that reserving
2, 4, 4, and 6 colors can prevent OOM and produce the
most speedup for 16-, 24-, 32-, and 48-core configurations
respectively.

Figure 4 shows the weighted speedup of WAY, SET, and
SWAP normalized to Baseline. Although WAY and SET
perform well at small core counts, their partitioning quality
degrades as the number of active cores increases. We look
closely at a representative bundle MP10; Figure 5 shows the
normalized IPC and L1 miss latency of each application in
the bundle in 24- and 48-core configurations. In the 24-core
configuration, both SET and WAY can provide a 2MB partition
for each instance of the cache sensitive application vpr. SWAP,

on the other hand, can provide a tighter 1.5MB partition to
each instance of vpr, and the resulting savings are given to
another sensitive application, mcf (whose partition is in the
dump area under SET and WAY). Although this improves
the overall system throughput by only 2% in the 24-core
configuration, the effect is amplified at higher core counts.
Moreover, by reducing the overall L2 miss rate, SWAP greatly
alleviates memory contention in the 48-core configuration, and
thus helps even the non-sensitive applications. As a result,
SWAP leads SET and WAY by 16%. Overall, SWAP outper-
forms WAY and SET by 4.36%, 5.44%, 4.3%, and 7.14%,
respectively, for 16-, 24-, 36-, and 48-core configuration.

B. Dynamic SWAP with Changing Workloads

It is not necessary to invoke cache repartition in the static
experiments so far, because the applications running on a core
are fixed in each bundle. In this section, we evaluate SWAP
in the scenario of workloads that come and go. Again, we
keep the number of active cores to be fixed (16, 32, and 48
for this experiment). Instead of running a fixed bundle, we
generate a long sequence of SPEC applications, and we inject
the applications from the top of the sequence to the system
until the number of active cores reaches the desired number.
When an application finishes, we fetch the next application
from the sequence, and schedule it to the currently idle core.
This is similar to the scenario in clusters or data centers,

60 %

80 %

100 %

120 %

140 %

160 %

180 %

200 %

220 %

mcf x1

mcf x2

milc x3

soplex x3

h264ref x3

vpr x1
vpr x2

libquantum x3

perlbench x3

leslie3d x3

0 %

20 %

40 %

60 %

80 %

100 %

120 %

140 %

160 %
IP

C

WAY
SET
SWAP

WAY
SET
SWAP

(a) 24 cores

60 %

80 %

100 %

120 %

140 %

160 %

180 %

200 %

220 %

mcf x2

mcf x4

milc x6

soplex x6

vpr x6
perlbench x2

perlbench x4

h264ref x6

libquantum x6

leslie3d x6

0 %

35 %

70 %

105 %

140 %

175 %

210 %

245 %

280 %

N
or

m
al

iz
ed

 L
1

M
is

s
La

te
nc

y

WAY
SET
SWAP

WAY
SET
SWAP

(b) 48 cores

Fig. 5: The breakdown of a sample bundle MP10 running on 24 and 48 cores in ThunderX. The bars show the IPC (normalized
to IPCalone), and the lines show the normalized L1 miss latency of each application.

0 1000 2000 3000 4000 5000 6000 7000 80004

6

8

10

12

14

IP
C

Baseline

SET

SWAP

Fig. 6: Real time throughput of Baseline, SET and SWAP of
Sequence 2 in the 48-core case over time (seconds).

where a sequence of applications is waiting in the task queue
for available cores. Because the new application may show
different cache characteristics, dynamic cache repartitioning is
needed. For example, assume that an application with a large
cache partition completes, and that a cache-insensitive one is
introduced into the system. The unwanted cache capacity of
the new application will be re-distributed to the other cores in
the system, which triggers a system-wide repartition.

For our 16-, 32-, and 48-core configurations, we construct
a sequence of 32, 64, and 96 applications, respectively, which
contains a mix of applications in different categories (I, S, T).
All the applications in the sequence have to finish at least once,
and when all of them finish, we terminate the experiment and
report the system throughput of the entire sequence. When the
fetch reaches the end of the sequence, it will start over from
the head of the sequence, and therefore no core will be idle.

We construct two sequences, both of which include 16
distinct SPEC benchmarks (out of 22 that we use in this paper).
Table III shows the SWAP’s improvement over Baseline and
WAY in terms of weighted speedup. SWAP improves the
weighted speedup by 8% and 17% for the two sequences in the
16-core cases, and the improvements increase to 11% and 20%
for the sequences in the 32-core cases. Although WAY does

TABLE III: Comparison of system throughput (weighted
speedup normalized to Baseline) for SET, WAY, and SWAP
in the dynamic experiment.

Cores Seq WAY SET SWAP Avg. Inj interval

16 1 1.04x 1.02x 1.08x 46s
2 1.11x 1.04x 1.17x 41s

32 1 0.97x 1.04x 1.11x 31s
2 1.04x 1.02x 1.20x 25s

48 1 0.92x 0.99x 1.11x 34s
2 1.00x 1.03x 1.15x 25s

fairly well in the 16-core sequences, its partition quality drops
significantly beyond that. Besides the scalability issue of WAY
and SET discussed in the static experiment in Section VI-A,
another important reason for the poor performance is that
application’s injection rate is much higher (shown in Table III)
with higher core count. An application may be be frequently
moved in and out from the “dump” area, which significantly
hurts performance. Figure 6 shows the real-time throughput
(sum of IPC) of SWAP vs. Baseline and SET. It is clear that
SWAP outperforms Baseline and SET most of the time, and
it runs “ahead” of Baseline and SET.

C. SWAP Overhead

This section studies the overhead of our SWAP approach.
The overhead comes from two sources: (1) the execution time
of the SWAP algorithm, which decides the allowable cache
region of each core; and (2) the overhead of page recoloring,
which involves migrating pages of an application from its old
colors to the new ones.

1) Algorithm Overhead: As is described in Section III-B,
SWAP first runs the lookahead algorithm [30] to decide the
optimal partition size of each core, followed by our proposed
placement technique to decide the actual cache region. The
complexity of the lookahead algorithm is O(N2), where N
is the number of active cores in the chip. Our placement
technique, which involves sorting all partitions by their size,
has a complexity of O(Nlog(N)).

16core 32core 48core
0

2

4

6

8

10

12
E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

(a) SWAP

16core 32core 48core
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(b) Placement

Fig. 7: Execution time distribution of the overall SWAP, and
the placement algorithm in 16-, 32-, and 48-core CMP.

Figure 7 shows the distribution of the execution time of
SWAP mechanism in 16-, 32-, and 48-core configurations.
As is shown in Figure 7a, on average, the overall SWAP
algorithm consumes 2ms, 6ms, and 8ms for 16-, 32-, and
48-core CMP (12ms in the worst case), which is negligible
compared with the 25s repartition interval. Figure 7b shows
the execution time of our placement technique across different
CMP configuration. Although it increases linearly, it took less
than 0.15ms even for the 48-core configuration.

2) Recoloring Overhead: Our SWAP algorithm tries to
avoid recoloring by taking the previous color assignment into
consideration. However, recoloring is sometimes unavoidable
to produce high quality cache partitions, and therefore we
study the overhead of recoloring by micro-benchmarking. In
the micro-benchmark, we actively recolor 50% of the pages
for each SPEC application every 20s, and record the system
time of that application. We consider the system time to be
the aggregated overhead of page recoloring. 2 Table IV shows
the overhead of some sample applications. The overhead per
recoloring heavily depends on the number of pages being
migrated. For the applications with large memory footprint
(e.g., bwaves migrates 70K pages), the overhead is about
200ms. For the applications that migrate thousands of pages,
the overhead is negligible. In any case, the overhead is small
compared with the 25s application repartition interval in our
setup.

TABLE IV: Recoloring Overhead

app total # page overhead per
recolored repartition (ms)

bwaves 71400 213.00
leslie3d 8000 28.00
bzip2 4900 11.00

gobmk 1350 8.00
gromacs 1100 4.00

D. Providing QoS Guarantees

A number of studies have found that the utilization of
most datacenter servers are low, and a primary reason is that

2This is a conservative estimation, because we account all the system time
to be the overhead of recoloring.

0 1000 2000 3000
0

20

40

60

80

9
5

th
 t

a
il

la
te

n
cy

 (
m

s)

(a) Shared cache

0 1000 2000 3000
0

20

40

60

80

(b) Exclusive cache

Fig. 8: Real time 95th tail latency of memcached co-running
with 16-app bundle MP1 over wall clock time (second), with
QoS as 10ms.

90 %

95 %

100 %

105 %

110 %

115 %

120 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG

W
ei

gh
te

d
S

pe
ed

up

WAY SWAP

Fig. 9: Comparison of system throughput (weighted speedup)
of the background 16-app bundle for WAY and SWAP, when
the QoS of memcached is satisfied. Weighted speedup is
normalized with Baseline.

the load of popular latency-critical (LC) workloads varies
significantly due to diurnal patterns and unpredictable spikes
in user accesses [3]. A promising way to improve server
utilization is to launch batch workloads on the background
to exploit the unused hardware resources [25]. A key to this
approach is that the QoS of the LC workloads should not be
affected by the batch workloads. In this section, we propose
to use SWAP to maximize the background batch workloads,
with a prerequisite of guaranteeing the QoS of a popular LC
workload memcached.

The memcached setup is described in Section V-C. We
use the multi-programmed 16-app SPEC bundles detailed
in Table II as the batch workloads. In order to guarantee QoS
of memcached, we allocate an independent cache partition
to the memcached server to avoid interference. In addition,
the capacity of such partition has to be dynamically adjusted
to satisfy the QoS. We adopt a feedback-based mechanism
similar to the one proposed by Lo et al. [25], which reads
the tail latency every 30s. We start with two cache ways for
the memcached server, and when the QoS is not met, we
increase the size of its partition by one cache way. When
QoS is met for a period of time (10 minutes in our setup),
we decrease the partition size to explore whether the QoS can

still be met. Figure 8 shows the tail latency of memcached over
time when the server either shares cache with a sample 16-
app SPEC bundle MP1, or owns its exclusive cache partition
whose size is dynamically adjusted. We find that QoS (95th
tail latency at 10ms) is frequently violated in the case of
shared cache, but is satisfied most of the time in the exclusive
cache case. A few spikes exist in Figure 8b because: (1) the
background applications exert higher memory pressure due to
phase change, which increases the penalty of L2 misses that
is no longer tolerable by memcached; (2) the partition size of
memcached is reduced for exploration (discussed above). In
either case, our feedback-based mechanism reacts fast enough
to reduce the tail latency to normal.

We use SWAP and WAY to partition the remaining cache
capacity among the background SPEC applications, and com-
pare them with a Baseline where all the SPEC applications
share the cache capacity left by memcached.3 Note that the
partition of memcached server can only be adjusted by cache
ways, because the overhead of recoloring its pages is too
much to guarantee QoS. As a result, we exclude SET in this
study. Figure 9 shows the system throughput of ten 16-app
bundles managed by WAY and SWAP. Although memcached
occupies a non-trivial amount of cache space, SWAP is still
able to provide enough granularity to partition the cache space,
resulting in 8.10% improvement in system throughput on
average over Baseline. This almost doubles the improvement
of WAY, which suffers from the limited granularity.

E. SWAP vs. Probabilistic Cache Partition

Probabilistic cache partition mechanisms [34], [41] have
been proposed as a scalable cache management technique
for large CMPs. However, to the best of our knowledge, all
those proposals require non-trivial hardware changes that are
currently unavailable on real processors. Therefore, in order
to compare against probabilistic cache partition mechanisms,
we implement SWAP in architectural simulator SESC [31].
However, we run into a dilemma: on one hand, simulation is
multi-order of magnitude slower than real machine execution,
and we can only simulate 100M instructions due to the time
constraints. This is equivalent to less than 1 second of actual
execution, which is almost negligible compared with hours of
running in our real machine experiment; on the other hand,
the overhead of SWAP is at the order of milliseconds, and
we have to simulate long enough to amortize this overhead.
As a result, in SESC, we ignore the two sources of SWAP
overhead described in Section VI-C, and focus on whether
SWAP is able to provide the same quality of management
as those probabilistic cache partition mechanism. Other over-
heads, such as cache and TLB flush due to page migration, are
faithfully modelled. Note that the results of our real machine
studies include all the SWAP overheads.

We compare SWAP with traditional Unmanaged LRU pol-
icy; Futility Scaling [41], which is a recently proposed proba-
bilistic cache partition mechanism that maintains fine-grained

3SWAP recolors pages that belong only to SPEC applications.

100 %

105 %

110 %

115 %

120 %

125 %

130 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG

W
ei

gh
te

d
S

pe
ed

up

SWAP
UCP-64
UCP-64-Ideal

FS
FS-32

Fig. 10: SWAP vs. Futility Scaling (FS) and utility-based way
partitioning (UCP) with highly associative cache.

partition using a feedback control mechanism; and utility-
based way partitioning (UCP) [30] with a highly-associative
cache. The architectural configuration is the same as ThunderX
processor described in Section V-A, with 32 active cores. The
shared L2 cache is 16MB with 16 ways, unless specified oth-
erwise. The application bundles are the same as the previous
real machine study.

Figure 10 shows the system throughput (weighted speedup),
normalized to Unmanaged LRU policy. We first compare with
UCP mechanism, which partitions the cache by ways. To give
an independent partition to each core, we evaluate UCP with
64 cache ways, which Cacti [28] reports a 25% increase in
access latency compared to 16 cache ways in ThunderX. UCP-
ideal assumes the same access latency. Figure 10 shows that
SWAP outperforms UCP in 8 out of 10 bundles, which shows
that SWAP with 16 cache ways provides a finer granularity
than UCP with 64 ways. The reason why UCP slightly
outperforms SWAP on bundle MP3 and MP4 is that SWAP
constrains the shape of each partition, thus not all partition
sizes are allowed (e.g., the partition size is a multiple of its
number of colors).

We then compare SWAP with Futility Scaling (FS) [41].
FS maintains a “futility” index of each cache line, and evicts
cache lines with the maximum futility among the replacement
candidates in the same set. Theoretically, FS is able to maintain
the partition size at the granularity of lines. However, we find
SWAP outperforms FS for 7 out of 10 bundles. This is because
with 16 cache ways, the number of replacement candidate (16)
is not large enough to include all the lines with large futility
indices. As a result, we evaluate FS with 32 cache ways (FS-
32), and we find that SWAP achieves comparable performance
improvement. In addition to requiring fewer cache ways,
SWAP does not require any extra hardware and is readily
available in commercial processors, without giving up any
performance improvement.

VII. CONCLUSION

We have proposed SWAP, a fine-grained cache management
technique that seamlessly combines set and way partitioning
with minimum hardware support. SWAP can successfully
provide hundreds of fine-grained cache partitions to achieve
effective cache partitioning in the manycore era. We have

prototyped SWAP on a 48-core Cavium ThunderX running
Linux, and shown average speedups over no cache partitioning
that are twice as large as those attained with way partitioning
alone.

ACKNOWLEDGMENTS

The authors would like to thank Bryan Chin and Srilatha
Manne for their valuable insight, and the anonymous reviewers
for their feedback. This work was supported in part by AFOSR
Award FA9550-15-1-0311; a research contract with, and an
equipment gift from Cavium; and a gift from Qualcomm. Jeff
Setter contributed to this work as an undergraduate student at
Cornell, and he was supported in part by Cornell’s Engineering
Learning Initiatives program.

REFERENCES

[1] D. H. Albonesi. Selective cache ways: On-demand cache resource
allocation. In Intl. Symp. on Microarchitecture (MICRO), 1999.

[2] AnandTech. ARM Challenging Intel in the Server Market: An
Overview. http://www.anandtech.com/show/8776/arm-challinging-intel-
in-the-server-market-an-overview/4, 2014.

[3] L. A. Barroso and U. Hölzle. The datacenter as a computer: An
introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture, 4(1):1–108, 2009.

[4] N. Beckmann and D. Sanchez. Jigsaw: scalable software-defined caches.
In Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT), 2013.

[5] D. J. Bernstein. Cache-timing attacks on AES, 2005.
[6] Cavium Inc. ThunderX Family of Workload Optimized Processors.

http://www.cavium.com/pdfFiles/ThunderX PB p12 Rev1.pdf, 2013.
[7] Cloudsuite. Cloudsuite.

http://cloudsuite.ch/datacaching/.
[8] C. Delimitrou and C. Kozyrakis. The Netflix challenge: Datacenter

edition. Computer Architecture Letters (CAL), 2013.
[9] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware scheduling for

heterogeneous datacenters. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2013.

[10] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and QoS-
aware cluster management. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2014.

[11] DigitalOcean. Transparent huge pages and alternative memory
allocators: A cautionary tale.
https://www.digitalocean.com/company/blog/transparent-huge-pages-
and-alternative-memory-allocators/.

[12] M. Dillon. Page coloring optimizations.
http://www.freebsd.org/doc/en US.ISO8859-1/articles/vm-design/page-
coloring-optimizations.html.

[13] S. Eyerman and L. Eeckhout. System-level performance metrics for
multiprogram workloads. IEEE MICRO, 28(3):42–53, 2008.

[14] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the
clouds: a study of emerging scale-out workloads on modern hardware.
In Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012.

[15] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal,
and R. Iyer. Cache QoS: from concept to reality in the Intel Xeon pro-
cessor E5-2600 v3 product family. In Intl. Symp. on High Performance
Computer Architecture (HPCA), 2016.

[16] IBM Inc. 64KB pages on Linux for Power systems.
https://www.ibm.com/developerworks/community/wikis/home?lang=
en#!/wiki/Welcome+to+High+Performance+Computing+(HPC)
+Central/page/64KB+pages+on+Linux+for+Power+systems, 2012.

[17] R. H. Inc. Huge pages and transparent huge pages.
https://access.redhat.com/documentation/en-US/Red Hat Enterprise
Linux/6/html/Performance Tuning Guide/s-memory-transhuge.html.

[18] V. Karakostas, O. S. Unsal, M. Nemirovsky, A. Cristal, and M. Swift.
Performance analysis of the memory management unit under scale-out
workloads. In IEEE Intl. Symp. on Workload Characterization (IISWC),
2014.

[19] R. E. Kessler and M. D. Hill. Page placement algorithms for large
real-indexed caches. ACM Trans. Comput. Syst., 1992.

[20] K. Kirkconnell. Often overlooked linux os tweaks.
http://blog.couchbase.com/often-overlooked-linux-os-tweaks.

[21] H. Lee, S. Cho, and B. R. Childers. Cloudcache: Expanding and
shrinking private caches. In Intl. Symp. on High Performance Computer
Architecture (HPCA), 2011.

[22] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining
insights into multicore cache partitioning: Bridging the gap between
simulation and real systems. In Intl. Symp. on High Performance
Computer Architecture (HPCA), 2008.

[23] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A software
memory partition approach for eliminating bank-level interference in
multicore systems. In Intl. Conf. on Parallel Architectures and Compi-
lation Techniques (PACT), 2012.

[24] L. Liu, Y. Li, Z. Cui, Y. Bao, M. Chen, and C. Wu. Going vertical
in memory management: Handling multiplicity by multi-policy. In Intl.
Symp. on Computer Architecture (ISCA), 2014.

[25] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis.
Heracles: Improving resource efficiency at scale. In Intl. Symp. on
Computer Architecture (ISCA), 2015.

[26] R. Manikantan, K. Rajan, and R. Govindarajan. Probabilistic shared
cache management (PriSM). In Intl. Symp. on Computer Architecture
(ISCA), 2012.

[27] MongoDB. Disable transparent huge pages (thp).
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/.

[28] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Cacti 6.0: A
tool to model large caches. HP Laboratories, 2009.

[29] B. Pham, J. Veselỳ, G. H. Loh, and A. Bhattacharjee. Large pages and
lightweight memory management in virtualized environments: can you
have it both ways? In Intl. Symp. on Microarchitecture (MICRO), 2015.

[30] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches. In Intl. Symp. on Microarchitecture (MICRO), 2006.

[31] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC simulator,
January 2005. http://sesc.sourceforge.net.

[32] R. H. Saavedra, R. S. Gaines, and M. J. Carlton. Micro benchmark
analysis of the KSR1. In ACM/IEEE Conf. on Supercomputing, 1993.

[33] D. Sanchez and C. Kozyrakis. The zcache: Decoupling ways and
associativity. In Intl. Symp. on Microarchitecture (MICRO), 2010.

[34] D. Sanchez and C. Kozyrakis. Vantage: scalable and efficient fine-grain
cache partitioning. In Intl. Symp. on Computer Architecture (ISCA),
2011.

[35] T. Sherwood, B. Calder, and J. Emer. Reducing cache misses using
hardware and software page placement. In Intl. Conf. on Supercomputing
(ICS), 1999.

[36] Standard Performance Evaluation Corporation. SPEC CPU2000.
http://www.spec.org/cpu2000/, 2000.

[37] Standard Performance Evaluation Corporation. SPEC CPU2006.
http://www.spec.org/cpu2006/, 2006.

[38] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring
scheme for memory-aware scheduling and partitioning. In Intl. Symp.
on High Performance Computer Architecture (HPCA), 2002.

[39] The OVH group labs. ARM Cloud.
https://www.runabove.com/armcloud.xml, 2016.

[40] D. M. Tullsen and J. A. Brown. Handling long-latency loads in a simul-
taneous multithreading processor. In Intl. Symp. on Microarchitecture
(MICRO), 2001.

[41] R. Wang and L. Chen. Futility scaling: High-associativity cache
partitioning. In Intl. Symp. on Microarchitecture (MICRO), 2014.

[42] X. Wang and J. F. Martı́nez. Xchange: A market-based approach to
scalable dynamic multi-resource allocation in multicore architectures.
In Intl. Symp. on High Performance Computer Architecture (HPCA),
2015.

[43] X. Wang and J. F. Martı́nez. ReBudget: Trading off efficiency vs. fair-
ness in market-based multicore resource allocation via runtime budget
reassignment. In Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2016.

[44] S. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. Vijaykumar. An
integrated circuit/architecture approach to reducing leakage in deep-
submicron high-performance i-caches. In Intl. Symp. on High Perfor-
mance Computer Architecture (HPCA), 2001.

[45] S.-H. Yang, M. D. Powell, B. Falsafi, and T. Vijaykumar. Exploiting
choice in resizable cache design to optimize deep-submicron processor
energy-delay. In Intl. Symp. on High Performance Computer Architecture
(HPCA), 2002.

[46] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache
partitioning system using page coloring. In Intl. Conf. on Parallel
Architectures and Compilation Techniques (PACT), 2014.

[47] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. PALLOC: Dram
bank-aware memory allocator for performance isolation on multicore
platforms. In IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, 2014.

[48] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page
coloring-based multicore cache management. In European conference
on Computer systems (EuroSys), 2009.

