
Bank Stealing for Conflict Mitigation in GPGPU Register File

Naifeng Jing, Shuang Chen, Shunning Jiang, Li Jiang, Chao Li, Xiaoyao Liang*
Shanghai Jiao Tong University, Shanghai, China
jingnaifeng@ic.sjtu.edu.cn, liang-xy@cs.sjtu.edu.cn

Abstract— Modern General Purpose Graphic Process-
ing Unit (GPGPU) demands a large Register File (RF),
which is typically organized into multiple banks to support
the massive parallelism. Although heavy banking benefits
RF throughput, its associated area and energy costs with
diminishing performance gains greatly limit future RF s-
caling. In this paper, we propose an improved RF design
with a bank stealing technique, which enables a high R-
F throughput with compact area. By deeply investigating
the GPGPU microarchitecture, we identify the deficiency
in the state-of-the-art RF designs as the bank conflict prob-
lem, while the majority of conflicts can be eliminated lever-
aging the fact that the highly-banked RF oftentimes expe-
riences under-utilization. This is especially true in GPGPU
where multiple ready warps are available at the scheduling
stage with their operands to be wisely coordinated. Our
lightweight bank stealing technique can opportunistically
fill the idle banks for better operand service, and the aver-
age GPGPU performance can be improved under smaller
energy budget with significant area saving, which makes it
promising for sustainable RF scaling.

Keywords— GPGPU, register file, bank conflict, bank
stealing, area efficiency

I. Introduction

By exploiting the parallelism using massive concurrent
threads, modern GPGPUs have emerged as pervasive al-
ternatives for high performance computing. To hide the
memory access latency, GPGPUs are featured by a zero-
cost context switching, which is supported by a large-sized
RF such that contexts of all the concurrent threads can be
held in each Streaming Multiprocessor (SM). For instance,
the up-to-date Nvidia Kepler architecture is equipped with
65,536 32-bit (256KB) registers to support 2,048 threads
per SM. On top of that, the RF capacity keeps increasing
at each product generation in seek of even higher thread-
level parallelism (TLP).

To manage such a large RF, a multi-banked structure is
preferred, which can sustain the multi-ported RF through-
put by serving concurrent operand accesses as long as there
are no bank conflicts. If conflict occurs, the requests are
serialized and the RF throughput is reduced leading to per-
formance loss. As a result, in face of the RF capacity scal-
ing in future GPGPUs, adding more banks is a natural way
for the increased registers without worsening the bank con-
flicts. Otherwise, the performance gained from higher TLP
could be compromised because more threads from sched-
ulers will compete for an insufficient number of RF banks,
aggravating the conflicts and reducing the throughput.

However, banks are not free. Adding banks requires ex-
tra column circuitry such as sensor amplifiers, pre-chargers,
bitline drivers and a bundle of wires [2]. Meanwhile, the
crossbar between banks and operand collectors grows sig-
nificantly with the increased number of banks. They affect
RF area, timing and power [3]. Because modern GPGPUs
tend to be area-limited as they have already been power-
limited [4], it is important to incorporate a suitable number
of banks while seeking for more economic ways to mitigate
the conflicts for the ever-increasing RF capacity.

In this paper, we explicitly address the issue for an ef-
ficient RF design to sustain the capacity scaling in future
GPGPUs. We observe many “bubbles” in bank utilization,
and apply fine-grained architectural control by stealing the
idle banks to serve concurrent operand accesses, which ef-
fectively recovers the throughput loss due to bank conflict-
s. By explicitly leveraging the multi-warp and multi-bank
features in GPGPUs, we balance the utilization on the ex-
isting RF resources instead of simply adding more banks.
Experimental results demonstrate that our proposed RF
with bank stealing can deliver better performance, less en-
ergy and significant area saving.

The remainder of this paper is organized as follows. Sec-
tion II reviews the background and previous work on GPG-
PU RF. Section III introduces our motivation. Section IV
proposes our techniques and architectural support. Section
V and VI present the evaluation methodology and experi-
mental results. Finally, Section VII concludes this paper.

II. Background and Previous Work

A. Baseline GPGPU and RF Architecture

A modern GPGPU consists of a scalable array of multi-
threaded SMs to enable the massive TLP. Threads are often
issued in a group of 32, called a warp. At any given clock
cycle, a ready warp is selected and issued by one sched-
uler. In Nvidia Fermi GPU, each SM has 2 schedulers, 32
processing lanes with lots of execution units as in Fig. 1.

The massive TLP challenges the RF design because the
RF size is quite large and keeps increasing. Meanwhile, si-
multaneous multiple reads/writes are required. In Nvidia
PTX standard [5], each instruction can read up to 3 reg-
isters and write 1 register. Obviously, constructing such
a heavily-ported (6-read and 2-write ports for dual-issue)
large RF (hundreds of KB) is not feasible or economical.
To solve this problem, banked RF structure has been pro-
posed [6]. While various RF organizations are feasible, one
of the most commonly used is to combine multiple single-
ported banks into a monolithic RF for reduced power and
design complexity. Registers associated with warps are dis-
tributed across the banks [7] , and each bank has its own

978-1-4673-8009-6/15/$31.00 ©2015 IEEE 55 Symposium on Low Power Electronics and Design

L2
Cache

DRAM

Bank
arbitrator

…

crossbar

operand collector

Bank Bank Bank Bank…

WID Inst
v r reg operand0
v r reg operand1
v r reg operand2

Streaming Processor
Streaming Processor

Streaming Processor

Fetch Decode Issue Arbitrate Read Execute Writeback

L1
Cache

Shared
memory

Const
cache

Texture
cache

I‐CacheWarps
……

……
Register File

In
te
rc
on

ne
ct

Fig. 1: Block diagram of a typical GPGPU pipeline, highlighting
the banked RF with operand collectors and a crossbar unit.

decoder, sense amplifiers, etc. to operate independently.
A typical banked RF is sketched in Fig. 1. For a sched-

uled instruction to be dispatched, it first reserves a free
operand collector. If fails, it has to wait till a collector
becomes available. The arbitrator distributes RF requests
from collectors to different banks but only allows a sin-
gle access to the same bank at a time. Once bank con-
flicts occur, the requests have to be serialized. Collectors
can receive multiple operands via the crossbar concurrent-
ly. After all the operands are collected, the instruction is
dispatched to the execution unit and the hosting collector
is released. Note that the bank conflicts directly affects
the operand fetching latency that cannot be hidden by the
multiple warps after the issue stage and causes issue stalls
at the beginning of the execution pipeline.

B. Previous Work on GPGPU RF Design

There have been an amount of work for energy-efficient
GPGPU RF designs, e.g. hybrid SRAM-DRAM [3], STT-
MRAM [8] and eDRAM-based RFs [9][10]. As these new
memory-based RFs compromises performance, these works
focus on smart strategies to recover the performance loss.

Architectural techniques are intensively studied to im-
prove RF performance or power. One study related to our
work in CPU domain [11] proposes an area-efficient RF by
reducing ports but leveraging buffer queues with pipeline
augments to sustain performance. Their method is imprac-
tical on GPGPUs because there is no register renaming and
the operand width is too wide for queuing. The work [12]
proposes RF caching for frequently accessed operands, but
the introduced storage (nearly 6KB per SM) aggravates
the already congested RF layout. Another work [4] pro-
poses a unified on-chip memory to accommodate applica-
tion diversity, but the unified structure can lead to longer
interconnect wires and longer access latency.

III. Motivation

A. Design Space Exploration

Conflicts have been acknowledged as a major reason for
the reduced RF throughput. Adding banks can improve the
throughput because registers can be spatially distributed
onto more independent banks. In this section, we conduct

a design space exploration to experimentally study how
banking impacts the performance, area, delay and power
on a pilot RF design as described in Section 5.

Performance. We vary the number of banks with a
fixed RF capacity of 128KB per SM that is typical in Fermi-
like GPGPUs [6]. The performance results are averaged
across all the simulated benchmarks as in Fig. 2(a). It
shows that adding banks benefits the performance signif-
icantly for a small number of banks. With an increasing
number of banks, the benefit diminishes as the 16-bank RF
delivers almost the same performance as the 32-bank case
due to the much reduced conflicts. The exploration reveals
that 16 banks can be optimal for the 128KB RF.

RF area. Fig. 2(b) plots the breakdown of the banking
area in a 128KB RF, such as array cells, peripheral circuit-
ry and the crossbar. It clearly shows that more banks lead
to significant area overhead. The area of array cells stays
constant across different schemes due to fixed RF capacity.
In contrast, the area for the peripheral circuitry such as
decoders, pre-chargers and equalizers, bitline multiplexers,
sense amplifiers and output drivers, expands notably with
an increasing number of banks. This is because a GPGPU
register of 128B is much wider than that in CPU. This sig-
nificantly increases the number of bitlines and widens the
data buses. Each bank duplicates the peripheral circuitry
for independent array control, resulting in even larger area
expansion compared to conventional CPUs [13].

Meanwhile, the crossbar dimension between RF banks
and collectors grows significantly with the number of banks.
For example, nearly 50% additional area is observed from
a 16-bank to a 32-bank RF, although these two designs
deliver quite similar performance as shown in Fig. 2(a).

RF timing. Because we fix the RF capacity, more banks
naturally result in shorter access time in the memory array
as shown in Fig. 2(c). However, array access time is just a
portion of the total RF delay and the advantage is compro-
mised by the wire transfer time via a larger crossbar. With
an increasing number of banks, the crossbar delay tends to
dominate. However, even the worst-case scheme studied in
this paper can meet the sub-1GHz GPGPU frequency, so
we do not consider their timing differences.

RF power. Fig. 2(d) shows the dynamic bank power.
The cell array power slightly decreases with more banks
because the bitlines are shorter under fixed RF capacity.
In contrast, the dynamic power on data transfers via the
crossbar increases considerably due to the larger RF area.
Meanwhile, the leakage power increases notably as in Fig.
2(e) because banks duplicate the peripheral circuitry.

Summary. The design space exploration reveals the
fact that fewer banks benefits the RF physical design such
as area, timing and power. However, simply reducing the
number of banks is not acceptable from the performance
point of view. For example, there is around 5% perfor-
mance loss from a 16-bank to an 8-bank design as shown
in Fig. 2(a), while our study shows that there is still plen-
ty of room for performance improvement even above the
16-bank, if the conflicts can be effectively eliminated.

0.9

1

1.1

1.2

1.3

4‐bank 8‐bank 16‐bank 32‐bank

N
or
m
. p
er
f.

(a) Normalized performance

0

1

2

3

4

4‐bank 8‐bank 16‐bank 32‐bank

N
or
m
. a
re
a

crossbar
bank peripherals
bank cells

(b) Normalized area

0

0.5

1

1.5

2

4‐bank 8‐bank 16‐bank 32‐bank

N
or
m
. d
el
ay

bank crossbar

(c) Normalized delay

0

0.5

1

1.5

4‐bank 8‐bank 16‐bank 32‐bank

N
or
m
. d
yn
. p
w
r bank crossbar

(d) Normalized dyn. power

0

1

2

3

4

4‐bank 8‐bank 16‐bank 32‐bank

N
or
m
. l
ea
k.
 p
w
r bank crossbar

(e) Normalized leakage power

Fig. 2: Design space exploration with a varying number of banks.

0
0.2
0.4
0.6

Bi
no

pt

Cu
tc
p

Hw
al
l

Im
gD

Pf
in
de

r

Q
.G
en Sa
d

Sg
em

m

S.
qr
ng

Tp
ac
f

AV
GLa
te
nc
y
pe

na
lty inter intra

Fig. 3: Latency penalty due to bank conflicts (16-bank RF).

0

0.1

0.2

0.3

Bi
no

pt

Cu
tc
p

Hw
al
l

Im
gD

Pf
in
de

r

Q
.G
en Sa
d

Sg
em

m

S.
qr
ng

Tp
ac
f

AV
G

Ba
nk

 u
til
. r
at
e

Fig. 4: Utilization rates for different benchmarks (16-bank RF).

B. Causes for Bank Conflicts

Without conflicts, the operands should pass through the
RF with one cycle latency offering maximum throughput.
Upon a bank conflict, only one operand can proceed on a
bank, causing latency penalty to other competing operand-
s. To quantify the penalty on the average RF access laten-
cy, we conduct simulation in Fig. 3, where higher penal-
ty means longer operand latency that results in reduced
RF throughput and more issue stalls. From this figure,
we see that the inter-instruction conflicts are quite com-
mon, resulting in an extra 0.1-0.6 cycle latency and directly
cause performance loss. There is another type of conflicts,
namely intra-instruction conflicts, come from the compet-
ing operands in the same instruction. However, they rarely
happen and can be effectively eliminated by the compiler.

C. RF Utilization Rate

Even for the optimal 16-bank design in Fig. 2(a), we still
observe under-utilization in the RF resources. Fig. 4 gives
the average utilization rates of all the RF banks. Average-
ly, the banks are accessed only 25% of the total execution
time. This result can be explained by runtime factors such
as data and control hazards, or misses on memory units
that might incur waiting cycles in RF. Unbalanced operand
loading of PTX instructions is another factor. Not all in-
structions fully use the 3 source operands, leading to un-
balanced stress on RF resources. In addition, the ideal case
of accessing all the banks at the same cycle hardly sustains
in real programs. Most of the time, operands are not even-
ly distributed across banks, leaving some of banks free of
accesses. A balanced utilization manifests as an intelligent
operand coordination to eliminate the bank bubbles and
accelerate the operand fetching during execution.

IV. Proposed Technique

A. Overview

In our work, we propose a bank stealing technique for a
balanced RF utilization in front of the conflicting access-
es from multiple instructions. It opportunistically “steals”
an unused bank at the current cycle for an operand sup-
posed to be fetched in the next cycle to avoid a potential
upcoming conflict. In fact, unlike CPU, GPGPU pipeline
is likely to have multiple ready warps waiting at the issue
stage (14 out of 48 warps as observed in our simulation)
with operands ready, which enables a wise operand coor-
dination especially on the under-utilized bank resources.
This technique adequately exploits the multi-warp, multi-
bank feature essential in GPGPU and therefore is broadly
applicable to a wide range of GPU architectures.

B. Bank Stealing for Inter-instruction Conflicts

B.1 Basic Idea

Conventionally upon a conflict, one of the register read-
s is deferred causing pipeline stall. However, if it can be
moved to the previous cycle and steal the bank when va-
cant, the conflict and pipeline stall can be eliminated.

As illustrated in Fig. 5, at time T , warp Wa and Wb are
issued, and their operands ra and rb are granted to read
the RF by passing the conflict checking at the arbitration
stage at T + 1. Also at T + 1, Wc and Wd are issued, and
their operands rc and rd are arbitrated to be conflicting at
T + 2. Conventionally, either rc or rd has to be delayed
causing serialized reads at T + 3 and T + 4. Differently, in
our scheme, the read of rd can be moved one cycle earlier
if it is not conflicting with ra and rb by passing conflict
checking at T + 1. In that case, Wc and Wd can finish
operand reading at T +2 and T +3 without pipeline stalls,
saving one cycle penalty. However if rd conflicts with ra
or rb at T + 1, the stealing is aborted and the pipeline
behaves as before. In fact, the bank stealing increases the
opportunity for read success by stealing the unused RF
bandwidth in the previous cycle.

B.2 Warp Scheduling for Read Stealing

To enable the read stealing, we need to identify the warps
(Wc,Wd) to be issued in the next cycle at the arbitration
stage (T + 1) of the current warps (Wa,Wb), and check
for the bank conflicts of operands (ra, rb, rd) between the
current and next warp instructions. The question is how
to identify the candidate warps to be issued one cycle a-
head for bank stealing, so that we can put them into the

RF readsArbitrate

T:

Issue

{Wa,Wb,Wc,Wd,…} Wa,Wb

ra, rb{Wc,Wd,Wa,Wb,…}T+1:

T+2:

T+3:

ra, rb

rc

conflicting

…

pool of ready warps RF readsArbitrateIssue

Wa,Wb

ra, rb rd

ra, rb, rd

rc

rdT+4: …
No read stealing Read stealing enabled

…

Wc,Wd

rc, rd

Wc,Wd

rc, rd

Fig. 5: Operand read stealing for conflict removal.

1
0

1
0

> > > >
> >

>
left_sel

W0 W2 W4 W6 W8 W10 W12 W14

Scheduler0

pool of warps

ready checking

selection tree

read stealing succeeds

Issue Arbitrate

Bank
arbitration

Current warp

Candidate warp
for read stealing

Fig. 6: Warp selection in read stealing using default scheduler.

bank conflict checking performed in the current warp in-
structions’ arbitration stage.

In fact, this is feasible due to the warp organization fea-
tured in GPGPU. It is very common that multiple warps
are ready and waiting for issue in the instruction pool. The
selection of candidate warp can be done with the aid of the
default warp scheduler. As in Fig. 6, a typical scheduler
uses a hierarchical tree to select and wake up the warp with
the highest priority for issue. At one stage above the bot-
tom level of the tree, there are two warps. In our scheme,
we always treat the other warp that is not selected for issue
at the current cycle as the candidate warp for stealing. The
operands of the current and candidate warps will be latched
into the arbitration stage for conflict checking. Upon con-
flicts, the operands can be read ahead if two conditions are
met: 1) There must be a free collector to hold the stolen
operands; 2) The stealing should resolve the conflicts in the
next cycle and not cause conflict in the current cycle. Note
that the scheduler should be overridden in the next cycle to
prioritize issuing the candidate warp if their operands have
been read ahead, as achieved by the shaded multiplexors
shown in Fig. 6.

The stealing might modify the default instruction flow
from the original scheduler, but the impact is minimal.
In our experiments, we find that although the instruction
flow may deviate, the occasional overriding of the default
scheduler turns out to have little impact on the program
behavior and performance. In fact, because the candidate
warps are chosen from the second to the bottom level of
the selection tree, they are likely to be scheduled for the
next cycle by the default scheduler anyway. Therefore, it
is lightweight and compilable to the schedulers like GTO,
round-robin, and other common schedulers [14][15].

The essence of stealing lies in the fact that RF banks
are under-utilized as in Fig. 4. By operand coordination
across multi-warps, it leverages the idle banks at current
cycle and opportunistically fills them with predicted future

③ Prioritization② Cascaded
selection

…

ba
nk
 re

qu
es
ts

grant for each request

stall
(for writes)

req

grant

(b)

①
 B
an
k
re
q

ge
ne

ra
tio

n

normal write nw_req

nw_gnt

normal read nr_req

nr_gnt

stealing read sr_req

sr_gnt

1
bank_wen

(a)

bank_ren

Fig. 7: Hardware support for read stealing in the arbitrator, (a)
overview, (b) cascaded selection. Note that the arbitration on normal
reads forms the critical path.

TABLE I: Key parameter settings in the GPGPU-Sim simulator

Parameters Setting Parameters Setting

cores (SMs) 15 SM Freq. (MHz) 700
warp size 32 # threads/SM 1,536
active CTAs/SM 8 # registers/SM 32,768
collecters/SM 10 # schedulers/SM 2

reads. Note that read stealing does not reduce the total
number of reads. It just balances the utilization on the
available RF bandwidth.

C. Arbitration for Bank Stealing

Finally, the arbitrator has to be modified to enable the
bank stealing. Fig. 7 (a) shows the arbitration chain to
generate the read request to a bank. At first, all operand
requests are decoded into bank requests as in 1©. Then, the
requests are passed through a set of cascaded selection in
2©, where the bank requesting signal will be generated from
each type of accesses such as “normal read” or “stealing
read” as shown in Fig. 7 (b). Finally, the priority logics
in 3© will grant the ultimate access respecting the normal
read first.

We design and synthesize the arbitration circuit and find
it to be less than 0.5% of the RF area. In terms of timing,
the original critical path, consisting of many normal reads
to be arbitrated in the cascaded selection tree, is generally
long enough to overlap the delay of stealing read. The only
added delay on the critical path is the additional input from
stealing read on the OR gate in 3©. We simulate and prove
that tighter delay constraints and gate sizing can easily
absorb its delay to the sub-1GHz nominal frequency.

V. Evaluation Methodology

In our experiment, we evaluate the RF designs with dif-
ferent number of banks, regarding their performance, area
and energy efficiency using our proposed bank stealing. For
the performance measurement, we use the cycle level archi-
tectural simulator GPGPU-Sim v3.2 [16]. The key simu-
lator configurations are shown in Table I, which generally
conform to the Fermi style architecture.

Table II shows the benchmarks used in our evaluation.
We investigate 10 benchmarks from a wide range of ap-
plications in CUDA SDK [17], Rodinia [18] and Parboil
[19] suites. We use CUDA SDK 4.2 for compilation and
the simulator is configured to use PTXPlus that provides
more accurate simulation results as reported in [16].

TABLE II: Benchmark characteristics

Name Abbr. From #Inst #regs Name Abbr. From #Inst #regs

binomialOptions Binopt SDK 275M 20 Cutcp Cutcp Parboil 122M 25
heartwall Hwall Rodinia 15M 28 imageDenoising ImgD SDK 120M 59
pathfinder Pfinder Rodinia 277M 13 quasirandomGenerator Q.Gen SDK 271M 15
SAD Sad Parboil 165M 15 sgemm Sgemm Parboil 195M 45
SobolQRNG S.qrng SDK 19M 14 tpacf Tpacf Parboil 2940M 28

TABLE III: Area, timing and power primitives (128KB RF)

Structures Dyna.(nJ) Leak.(nJ) Area(mm2) Delay(ns)

16-bank 0.185 384.4 0.565 0.31
Crossbar 0.071 11.2 0.225 0.31

To learn the RF delay and power, we synthesis a pi-
lot RF with multiple single-ported banks by using SMIC
commercial memory compiler tool [20] with industrial cell
library. We build the RF by varying the number of banks
with the area, power and delay number reported from the
memory compiler. We also evaluate the crossbar using H-
SPICE. Detailed primitives are shown in Table III. We
collect RF statistics from GPGPU-Sim and use these primi-
tives to compute the RF power, including the normal bank
accessing, crossbar transmission and bank stealing if en-
abled. For all other non-RF chip-wide components, we use
GPUWattch [21] to calculate the power.

VI. Experimental Results

In our experiments, we first show the overall performance
improvement by the proposed RF on different banking, and
analyze representative designs in details. We use straight
RF and proposed RF to denote the traditional RF and the
RF equipped with the proposed read stealing technique.

A. Design Space Study

Fig. 8 studies the straight and proposed RFs with a fixed
capacity of 128KB but different numbers of banks (4, 8, 16,
32) and a crossbar unit accordingly. In Fig. 8 (a, b), we
see that the proposed RFs always outperform the straight
RFs with the same bank, while having almost the same area
due to the negligible hardware cost for bank stealing. The
overall performance gain ranges from 6% to 10%. Given the
fact that we only make light changes on a single GPGPU
unit, this improvement is significant. Another observation
is that the proposed RFs often outperform the straight RFs
with more banks. For instance, the proposed 8-bank RF
outperforms the straight 16- or 32-bank by eliminating the
potential bank conflicts. Fig. 8 (c, d) also demonstrate
the superiority of our proposed RFs in terms of area and
energy efficiency, respectively, where the area efficiency is
calculated as normalized performance over area, while the
energy efficiency is normalized performance over energy.

In summary, the proposed RF is much more area-
efficient, e.g. nearly 25% and 50% area savings over the
16- and 32-bank straight RFs. At the same time, the per-
formance is also superior with 3.8% and 2.5% improvement
over the 16- and 32-bank straight RFs. Because the RF size
keeps increasing, the much improved area efficiency with

0.9
1

1.1
1.2
1.3

4‐
ba
nk

8‐
ba
nk

16
‐b
an
k

32
‐b
an
k

4‐
ba
nk
*

8‐
ba
nk
*

16
‐b
an
k*

32
‐b
an
k*

N
or
m
. p
er
f.

(a) Normalized performance

0.5
1

1.5
2

2.5

4‐
ba
nk

8‐
ba
nk

16
‐b
an
k

32
‐b
an
k

4‐
ba
nk
*

8‐
ba
nk
*

16
‐b
an
k*

32
‐b
an
k*

N
or
m
. a
re
a

(b) Normalized area

0.4
0.6
0.8
1

1.2

4‐
ba
nk

8‐
ba
nk

16
‐b
an

k
32

‐b
an

k

4‐
ba
nk
*

8‐
ba
nk
*

16
‐b
an

k*
32

‐b
an

k*

N
or
m
. a
re
a
ef
f.

(c) Normalized area efficiency

0.8
1

1.2
1.4
1.6

4‐
ba
nk

8‐
ba
nk

16
‐b
an

k
32

‐b
an

k

4‐
ba
nk
*

8‐
ba
nk
*

16
‐b
an
k*

32
‐b
an
k*N
or
m
. e
ne
rg
y
ef
f.

(d) Normalized energy efficiency

Fig. 8: RF design space study using different banks. Proposed RFs
are marked with “*”.

better performance will be beneficial for the future scaling.

B. Case study

As a case study, we choose the proposed 8-bank RF that
exhibits the highest area efficiency. For comparison, we
choose 8- and 16-bank straight RFs. The straight 16-bank
RF acts as the baseline and all the results are normalized
to it. Detailed results are shown in Fig. 9. From the
bottom bar, we see that the straight 8-bank RF degrades
the performance by nearly 5% compared to the straight
16-bank RF mainly due to the increased bank conflicts.

Performance. In Fig. 9, the average performance gets
improved by around 8% over the straight 8-bank RF by
read stealing. That means a better performance of 3.8%
than the straight 16-bank RF. The results confirm that
read stealing can effectively reduce the potential conflicts
and improve the overall performance. Greater performance
gains could be expected on more RF bounded codes.

It is worth mentioning that we have evaluated different
types of warp schedulers including round-robin, two-level
and etc. The conclusion stays the same as using GTO. Al-
though read stealing may occasionally modify the instruc-
tion flow, the experiments verify it to be generally applica-
ble and not sensitive to the host scheduling policies.

RF access latency. Fig. 10 shows the latency penalty
measured in pipeline cycles on RF accessing. Compared
with Fig. 3(a) on straight 16-bank RF, the straight 8-bank
RF nearly doubles the latency penalty due to aggravat-
ed conflicts. Instead, the proposed 8-bank RF effectively
shortens the operand latency by around 70%. It also de-
tects part of the intra conflicts and eliminates them as well.

We also notice an increasing utilization rate of 55% in

0.9

1

1.1

Bi
no

pt
Cu

tc
p

Hw
al
l

Im
gD

Pf
in
de

r
Q
.G
en Sa
d

Sg
em

m
S.
qr
ng

Tp
ac
f

AV
G

N
or
m
. p
er
f.
to

st
ra
ig
ht
 1
6‐
ba
nk

 straight 8‐bank read‐stealing

Fig. 9: Performance comparison on the
RF designs w/o and w/ stealing.

0

0.5

1

Bi
no

pt

Cu
tc
p

H
w
al
l

Im
gD

Pf
in
de

r

Q
.G
en Sa
d

Sg
em

m

S.
qr
ng

Tp
ac
f

AV
G

La
te
nc
y
pe
na
lty inter

intra

Fig. 10: Latency penalty on straight (left) and
proposed (right) RF with 8-bank.

0.8

1

1.2

Power Power
efficiency

Energy
efficiency

N
or
m
. p
. a
nd

 e
. e
ff. straight 16‐bank straght 8‐bank

proposed 8‐bank

Fig. 11: Normalized power and energy
efficiency.

the proposed 8-bank RF with read stealing against 25% and
45% in the straight 16- and 8-bank RFs, respectively. This
is mainly because the greatly reduced number of banks and
more balanced usage of the RF.

Power and energy efficiency. We show the power
number and use the metric perf/power to quantify the
power efficiency and perf/energy for the energy efficiency.
The power results reported are chip-wide power counting
in all the GPGPU core units, and L1/L2 caches and etc.

Fig. 11 gives the results. The straight 8-bank RF con-
sumes 5% less power than the straight 16-bank RF. This
is because fewer banks reduce the crossbar power and the
leakage despite the slightly increased bank dynamic pow-
er as explored in Fig. 2. However, straight designs using
fewer banks are inferior when performance is taken into
account. In contrast, our proposed RF is more energy ef-
ficient. Although there is additional arbitration logic, the
power overhead is so small and negligible. When counting
in the performance, the energy efficiency of our proposed
design can beat the straight 16-bank RF by 15%, owning
to the superior performance gains.

VII. Conclusions

In this study, we propose an efficient RF design with con-
flict elimination to sustain the high RF throughput facing
ever-increasing TLP. Our read stealing technique explicitly
exploits the available bandwidth in the highly banked RF
structure to eliminate conflicts and leverages the massive
parallelism in GPGPU to access the RF more intelligently.
It improves the performance using a half or even quar-
ter number of banks with smaller area and energy budget,
which implies that the proposed RF can sustain the fast-
increasing capacity of RF scaling in future GPGPUs.

Acknowledgments

This work is partly supported by the Natural Science
Foundation of China (Grant No. 61402285, No. 61202026
and No. 61332001), China Postdoctoral Science Founda-
tion (Grant No. 2013M540362 and No. 2014T70418) and
Program of China National 1000 Young Talent Plan.

References

[1] NVIDIA Whitepaper. Nvidia’s next generation CUDA compute
architecture: Kepler GK110.

[2] Xiaoyao Liang, Kerem Turgay and David Brooks. Architectural
power models for SRAM and CAM structures based on hybrid
analytical/empirical techniques. In Proceedings of the Interna-
tional Conference on Computer-Aided Design, 2007.

[3] Wing-kei S. Yu, Ruirui Huang, Sarah Q. Xu, Sung-En Wang,
Edwin Kan, and G. Edward Suh. SRAM-DRAM hybrid memory

with applications to efficient register files in fine-grained multi-
threading. In Proceedings of the 38th International Symposium
on Computer Architecture, 2011.

[4] Mark Gebhart, Stephen W. Keckler, Brucek Khailany, Ron-
ny Krashinsky, and William J. Dally. Unifying primary cache,
scratch, and register file memories in a throughput processor. In
Proceedings of the 45th International Symposium on Microar-
chitecture, pages 96–106, 2012.

[5] NVIDIA Whitepaper. Parallel thread execution isa version 3.0.
[6] NVIDIA Whitepaper. NVIDIA’s Next Generation CUDA Com-

pute Architecture: Fermi.
[7] Mohammad Abdel-Majeed and Murali Annavaram. Warped reg-

ister file: A power efficient register file for GPGPUs. In Proceed-
ings of the 19th HPCA, pages 412–423, 2013.

[8] Bingyi Cao Nilanjan Goswami and Tao Li. Power-performance
co-optimization of throughput core architecture using resistive
memory. In Proceedings of the IEEE International Symposium
on High Performance Computer Architecture, 2013.

[9] Naifeng Jing, Yao Shen, Yao Lu, Shrikanth Ganapathy, Zhigang
Mao, Minyi Guo, Ramon Canal, and Xiaoyao Liang. An energy-
efficient and scalable eDRAM-based register file architecture for
GPGPU. In Proceedings of the 40th International Symposium
on Computer Architecture, 2013.

[10] Naifeng Jing, Haopeng Liu, Yao Lu, and Xiaoyao Liang. Com-
piler assisted dynamic register file in gpgpu. In Proceedings of
the International Symposium on Low Power Electronics and De-
sign, 2013.

[11] Nam Sung Kim and Trevor Mudge. Reducing register ports using
delayed write-back queues and operand pre-fetch. In Proceedings
of the 17th ICS, pages 172–182, 2003.

[12] Mark Gebhart, Daniel R. Johnson, David Tarjan, Stephen W.
Keckler, William J. Dally, Erik Lindholm, and Kevin Skadron.
Energy-efficient mechanisms for managing thread context in
throughput processors. In Proceedings of the 38th International
Symposium on Computer Architecture, pages 235–246, 2011.

[13] Jessica H. Tseng and Krste Asanović. Banked multiported regis-
ter files for high-frequency superscalar microprocessors. In Pro-
ceedings of the 30th International Symposium on Computer Ar-
chitecture, 2003.

[14] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam
Miftakhutdinov, Onur Mutlu, and Yale N. Patt. Improving GPU
performance via large warps and two-level warp scheduling. In
Proceedings of the 44th International Symposium on Microar-
chitecture, 2011.

[15] Timothy G. Rogers, Mike OConnor, and Tor M. Aamodt. Cache-
conscious wavefront scheduling. In Proceedings of the 45th In-
ternational Symposium on Microarchitecture, December 2012.

[16] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong,
and Tor M. Aamodt. Analyzing CUDA workloads using a de-
tailed GPU simulator. In International Symposium on Perfor-
mance Analysis of Systems and Software, pages 163–174, 2009.

[17] NVIDIA. https://developer.nvidia.com/cuda-toolkit.
[18] Shuai Che, Michael Boyer, and etc. Rodinia: A benchmark suite

for heterogeneous computing. In Proceedings of the International
Symposium on Workload Characterization, 2009.

[19] John A Stratton, Christopher Rodrigues, and etc. Parboil: A re-
vised benchmark suite for scientific and commercial throughput
computing. Center for Reliable and High-Performance Comput-
ing, 2012.

[20] Semiconductor Manufacturing International Corporation.
Register-file user guide, 2012.

[21] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed
Gilani, Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa Red-
di. GPUWattch: Enabling energy optimizations in GPGPUs. In
Proceedings of the 40th International Symposium on Computer
Architecture, 2013.

