
Workload Characterization of Interactive Cloud
Services on Big and Small Server Platforms

Shuang Chen∗, Shay GalOn†, Christina Delimitrou∗, Srilatha Manne†, José F. Martı́nez∗
∗Computer Systems Laboratory, Cornell University, Ithaca, NY 14853, USA

{sc2682, delimitrou, martinez}@cornell.edu
†Cavium Inc, San José, CA 95131, USA
{shay.galon, bobbie.manne}@cavium.com

Abstract—Key-value stores (e.g., Memcached) and web servers
(e.g., NGINX) are widely used by cloud providers. As interactive
services, they have strict service-level objectives, with typical
99th-percentile tail latencies on the order of a few milliseconds.
Unlike average latency, tail latency is more sensitive to changes
in usage load and traffic patterns, system configurations, and
resource availability. Understanding the sensitivity of tail latency
to application and system factors is critical to efficiently design
and manage systems for these latency-critical services.

We present a comprehensive study of the impact a diverse set of
application, hardware, and isolation configurations have on tail
latency for two representative interactive services, Memcached
and NGINX. Examined factors include input load, thread-level
parallelism, request size, virtualization, and resource partitioning.
We conduct this study on two server platforms with significant
differences in terms of architecture and price points: an Intel
Xeon and an ARM-based Cavium ThunderX server. Experimen-
tal results show that latency on both platforms is subject to
changes of several orders of magnitude depending on application
and system settings, with Cavium ThunderX being more sensitive
to configuration parameters.

I. INTRODUCTION

Warehouse-scale systems host many interactive online ser-
vices, including search, social networking, and online nav-
igation. These are hosted either as monolithic, single-tier
applications, or as part of multi-tier configurations, for ex-
ample consisting of a webserver front-end, a memory caching
middle-tier, and a database backend.

These services are typically compute-intensive, and operate
under strict service-level objectives (SLO). Rather than opti-
mizing for low average latency, SLOs are defined with respect
to tail latency, such as 95th, 99th, or 99.9th latency percentiles.
This makes interactive services much more sensitive both to
application parameters like the intensity of input load, or the
size of incoming requests, and to system parameters, such as
the underlying architecture, the availability of memory and
network resources, and the existence of effective isolation
mechanisms, in the presence of multi-tenancy. As resource
isolation techniques, such as cache and network bandwidth
partitioning, become integrated to more production datacenter
servers [1]–[3], and an increasing amount of research goes
towards low-power hardware for cloud services [4]–[6], it is
critical to quantify the impact these choices have on applica-
tion latencies.

In this paper, we present a detailed study of two representa-
tive interactive cloud services, focusing on the latency impact
of several application, hardware, and resource sharing con-
figuration parameters. With respect to application factors, we
study the sensitivity to input load, request and dataset size, and
thread-level parallelism. With respect to system parameters,
we study the sensitivity to hardware ISA, comparing an Intel
Xeon and a Cavium ThunderX server platform, as well as the
sensitivity to virtualization technologies, such as containers.
Finally, with respect to resource sharing, we study the latency
impact of a set of OS and hardware partitioning techniques in
the presence of multi-tenancy.

In terms of applications, we focus on NGINX and Mem-
cached. NGINX [7], a high-performance HTTP server, is one
of the most popular open-source web servers globally. It is
responsible for serving over 33% of online web requests [8] as
of August 2017, making it the second most popular web server
platform in production. It owes its popularity to its simplicity,
generality, high performance, and scalability. Memcached [9]
is a high-performance object caching system and it is used
for speeding up web requests by caching data and objects in
memory. Such distributed, in-memory key-value stores have
become a critical tier in modern cloud services, and directly
impact their throughput, latency, and efficiency [10]–[12].
Memcached is used extensively by several large companies,
such as Facebook, Twitter, and YouTube [13], [34].

These two applications are quite different: NGINX is de-
signed as a stateless front-end service, while Memcached is
a stateful middle-tier cache. NGINX requests involve more
user-space processing, while Memcached requests are much
simpler, and mostly processed in kernel-space. Their target
QoS is also different; NGINX typically targets a 99th latency
percentile of a few tens of milliseconds [5], while Memcached
has slightly more stringent requirements, in hundreds of mi-
croseconds up to a few milliseconds [11], [34].

Processors of specifications similar to those of Intel Xeon
have been traditionally used by cloud providers. More recently,
however, there has been renewed interest for chips with many,
relatively small cores, which target highly parallel workloads,
and can offer power, area, and price advantages, under the
right application and system conditions [14], [15].

In our study, we use a 22-core Intel Xeon server, and a
48-core Cavium ThunderX server, with simpler ARM cores.

We show that, while latency on both platforms is influenced
by the examined application and system factors, the Cavium
ThunderX shows more sensitivity to application and resource
changes. For instance, the overhead of virtualization on Thun-
derX is 1.6-1.9x that of the Xeon server. Similarly, software
isolation mechanisms require 45% to 80% more time when
used on ThunderX.

II. RELATED WORK

Key-value stores have been studied in depth in recent years.
Atikoglu et al. [34] use traces from Facebook’s Memcached
deployment to analyze request composition in production
systems. Leverich et al. [11] analyze the system challenges
towards maintaining high throughput and low latency with
Memcached. They show that queueing delay, scheduling delay,
and load imbalance are three dominant factors for Mem-
cached’s latency. Li et al. [10] propose a hardware system
design for achieving a billion Memcached requests per second.
This prior work focuses on profiling Memcached on high-end
servers traditionally used by cloud providers.

Over the past decade there has been a renewed interest
in hosting cloud workloads on servers comprised of small,
low-power cores. Davis et al. [16] explore the performance of
multithreaded single- and super-scalar CMTs for commercial
workloads running in large-scale systems. They find that
single-scalar CMTs significantly outperform their superscalar
counterparts given the same area budget. The Niagara micro-
processor chip [17] makes the case for small cores to improve
the design efficiency and throughput of memory and I/O-
bounded workloads. Loghin et al. [18] study the performance
of big data applications on mobile ARM nodes. Reddi et al. [5]
present an in-depth evaluation of the impact of small cores on
a production web search service that uses a compute-intensive
machine learning engine, while Hölzle [19] states that brawny
cores still outperform wimpy cores when tail latency is the
metric of interest. Recent work has also explored special-
purpose acceleration units for datacenter workloads, such
as websearch indexing [20] and neural networks [21], [22];
although these designs improve both performance and power,
they require significant design effort, and are only applicable
for specific cloud services. In general, while these studies offer
useful insights on the impact of small cores on cloud services,
they are not directly applicable to workloads with microsecond
level QoS targets, like Memcached. In addition, these studies
are limited to dedicated resource instances, where a single
application has exclusive access to the underlying platform.
In Section V, we also study how resource partitioning and
isolation impact tail latency on each of the examined platforms
when two interactive services are co-scheduled.

III. EXPERIMENTAL SETUP AND METHODOLOGY

A. Experimental Platforms

Table I summarizes the two examined platforms.
Cavium’s ThunderX differs from Intel Xeon in several

ways [24]. The most fundamental difference is its ISA.
ThunderX implements the ARMv8 64-bit ISA, while Xeon

TABLE I
PROCESSOR SPECIFICATION

Intel Xeon Cavium ThunderX
Model E2699-v4 CN88XX NT
Sockets 2 2

Cores/socket 22 48
Threads/core 2 1

Frequency 2.2GHz 1.8 GHz
Process 14nm 28nm

L1 Inst/Data Cache 32/32KB 78/32KB
L2 256K None

Last-Level Cache 55M, 20 ways 16M, 16 ways
Cache line 64B 128B

uTLB 64 entries 32 entries
MTLB 1,536 entries 256 entries

Low Volume Pricing (Oct, 2016) $4,115 [23] $785 [24]

implements X86-64. ThunderX has 48 single-threaded ARM-
based cores, which support 48 hardware threads, while Xeon
E2699-v4 uses 22 dual-threaded cores to support 44 hardware
threads [25]. The ThunderX cores are mostly in-order with
some out-of-order execution of memory dependent operations,
as opposed to the fully out-of-order Xeon cores. The Thun-
derX also operates at a lower frequency, and has a smaller
last-level cache (LLC). However, its L1 instruction cache is
more than double that of the Xeon system. In addition, it has
a two-level cache hierarchy as opposed to a three-level for
Xeon. Both have 2 levels of TLBs, although the TLB sizes
are smaller for ThunderX. Smaller TLBs combined with a
smaller LLC implies potentially more page walks and higher
page walk latencies.

B. Application Deployment

We use Memcached 1.4.36 and NGINX 1.12.0, compiled
from their official sources on both platforms [7], [26]. We
install Memcached and NGINX on both bare metal and
containers. We use LXC (Linux containers) 2.0.7, and Ubuntu
16.04 with kernel 4.8.0 on both platforms.

ThunderX is a dual socket system, however, our test ma-
chine only has one socket. For fairness, we also use one socket
on the Xeon server. Eight cores are exclusively allocated to
network interrupts on both servers, one for each of their
8 network completion queues. Therefore, 14 and 40 cores
are available for the cloud services on Xeon and ThunderX
respectively.

Unless otherwise stated, the default service deployment is:
• Memcached: one 7-thread instance on LXC pinned to 7

different physical cores (hyper-threads on Xeon are not
used); 6.4 million items, each with a 30B key and a 200B
value; QoS target is set to 1ms for 99th percentile latency.

• NGINX: one instance with 7 worker processes on LXC
pinned to 7 physical cores; 100K static files, each file
is 4KB; Open file cache [27] is enabled for faster file
lookup. QoS is set to 20ms for 99th percentile latency.

We disable hyper-threads (HT) on Xeon to allow for a more
fair comparison as the ThunderX does not support HT; we
study hyper-threading in Section V-B2. We statically configure

10 20 30 40 50 60 70 80 90 100
Percentage of Max RPS

100

101

102

103

104

105

106
La

te
nc

y
(u

se
c)

AVG
99th %ile

(a) Memcached on Xeon

10 20 30 40 50 60 70 80 90 100
Percentage of Max RPS

10−1

100

101

102

103

104

La
te

nc
y

(m
se

c)

(b) NGINX on Xeon

10 20 30 40 50 60 70 80 90 100
Percentage of Max RPS

100

101

102

103

104

105

106

La
te

nc
y

(u
se

c)

(c) Memcached on ThunderX

10 20 30 40 50 60 70 80 90 100
Percentage of Max RPS

10−1

100

101

102

103

104

La
te

nc
y

(m
se

c)

(d) NGINX on ThunderX

Fig. 1. Latency with input load. max RPS is the maximum request injection rate as defined in Section III-B. At 7 physical cores, max RPS is 672K and 420K
for Memcached and NGINX respectively on the Xeon, and 128K and 84K for Memcached and NGINX respectively on the ThunderX server. Horizontal lines
show the target QoS for each application. The y-axis is logarithmic.

the number of threads at instantiation time, since NGINX and
memcached do not support dynamic thread spawning. This
also avoids overheads for synchronization, lock contention,
and load balancing. We instantiate 7 threads per server, as
some of the later experiments require running the two services
on different physical cores, and only 14 cores are available in
total on the Xeon platform.

The maximum achievable throughput (requests per second,
RPS) differs between the two platforms, when using the same
number of physical cores. We measure the maximum RPS that
seven physical cores can sustain in each architecture, such that
injecting higher rates will result in dropped requests. Xeon can
sustain 672K and 420K RPS with seven cores for Memcached
and NGINX, respectively; ThunderX can sustain 128K and
84K, respectively. The throughput per core on the ThunderX
system is lower due to the lower frequency, smaller caches
and TLBs (Section III-A), and because the system relies on
parallelism, as opposed to high single-thread performance to
provide good QoS at the socket level. (A back-of-envelope
whole-socket extrapolation would put ThunderX at 128K ×
40/7 = 731K RPS for Memcached, and 84K×40/7 = 480K
RPS for NGINX.) Socket-level comparisons for throughput
can be found in [24], [25].

C. Testing Strategy

We use open-loop workload generators as clients for both
Memcached and NGINX to ensure that latency measurements
at high load are accurate [28], [29]. For Memcached, we use an
in-house load generator, similar to mutilate [30]. For NGINX,
we modified a popular open-source generator, wrk2 [31], from
close- to open-loop. Clients run on one or several other Intel
Xeon processors, with 10Gbps network links to the Xeon
and ThunderX servers. We instantiate enough clients to avoid
client-side delay from saturation. Therefore, latencies reported
by clients are mostly due to server-side delays.

We use exponential distribution as requests’ inter-arrival
time distribution [11], to simulate a Poisson process, where
requests are sent continuously and independently at a constant
average rate. We use a Zipfian distribution for the request
popularity in NGINX [32], [33]. We only generate GET
requests as they statistically account for more than 95% of
all requests in production systems [34]. For each experiment,
we run the clients for 2 minutes (excluding time for warm-up

and cool-down), and record achieved throughput, and average
and 99th percentile latency.

IV. WORKLOAD CHARACTERIZATION IN ISOLATION

We explore how the average and tail (99th percentile) la-
tencies of Memcached and NGINX change with the following
factors. In terms of application parameters, we study input
load, thread parallelism, and request size. With respect to
system parameters, we evaluate the overhead of virtualization.
All studies are done on the two platforms described in Sec-
tion III-A. Hereafter, we use tail and 99th percentile latency
interchangeably, unless otherwise noted.

A. Input Load

Cloud servers are usually overprovisioned and lightly uti-
lized [1], [35]–[38]. Typical CPU utilization rarely exceeds
30%, with public clouds being even more underutilized than
private systems [39]. There are several reasons for this un-
derutilization, including the current reservation-based cluster
management interfaces, provisioning for diurnal patterns and
unpredictable load spikes, hardware heterogeneity, resource
interference, and planning for future growth [36], [40], [41].

We first study how latency is impacted by increasing load, to
determine whether overprovisioning is warranted in interactive
services. We progressively increase request injection from 10%
to 100% of the max RPS as determined in Section III-B, and
plot the average and tail at each input load level. Injection rates
per load level are kept stable, as discussed in Section III-C.
To understand the source of increased latencies, we further use
Systemtap [42], a system profiling tool that enables inserting
probe points in the Linux kernel.

Figure 1 plots the relationship between latency and input
load. We observe similar trends and thresholds on Xeon and
ThunderX. The maximum input load for which the server
still meets the target QoS is approximately 70% of the max
RPS for Memcached and 80% for NGINX. These load points
are significantly higher than current datacenter utilizations,
signaling that, excluding unexpected load spikes, resource
overprovisioning is not necessary to preserve tail latency QoS.

NGINX has a higher saturation point than Memcached,
mostly because of its more relaxed SLO, 20ms in our case,
which makes it possible to tolerate higher delays. Average

TABLE II
LATENCY BREAKDOWN OF MEMCACHED IN MICROSECONDS AT

DIFFERENT PERCENTAGE OF MAX RPS.

Xeon ThunderX
10% 90% 10% 90%

Network 6 6 14 14
Epoll 3 782 4 1,290

Libevent 1 1,009 5 1,650
Read 1 3 9 20

Memcached 1 1 7 7
Send 5 5 24 24
Total 20 1,806 67 3,005

latencies are smaller on ThunderX because requests take
longer to process on its smaller cores.

To understand the source of increased latencies, we further
use Systemtap [42], a system profiling tool that inserts probe
points at kernel level along the application’s control flow. A
Memcached request goes through the following stages on the
server side [11]:

1) Network: A request first arrives at the server’s NIC,
raising a hardware interrupt. Linux acknowledges the
interrupt, and further processes the packet in the softIRQ
context. The request then goes through the network
stack, including TCP/IP processing. The Memcached
process is then invoked to further handle this packet.

2) Epoll: Memcached uses the epoll wait syscall to queue
and receive new requests. epoll wait is called periodi-
cally at an interval defined by timeout. Requests coming
in the same timeout interval are received at the same
time, reducing the number of syscalls in the system.
However, if previous requests have not been propagated
to the later processing steps, new requests cannot be
received, increasing the queueing time at epoll wait.

3) Libevent: Received requests by epoll wait are then
forwarded to be parsed and processed. If requests are
received at high rates, they will again be subject to long
queueing delays before processing can commence.

4) Read: Memcached calls the read syscall to read the
socket with the new incoming request, which involves
unwrapping the network packet header and payload,
applying any priorities denoted in the header, and for-
warding the payload to the next stage for processing.

5) Memcached: Memcached requests are short and simple.
The server process first parses the request, then looks
up the key in its hash table, and retrieves a pointer to
the requested value.

6) Send: Finally, the obtained key-value pair is processed
by TCP/IP and sent to the NIC’s TX queue.

Note that request processing in the Memcached stage is
serialized. When request injection rates are high, this stage
becomes a bottleneck, increasing the queueing delays in the
Read phase, and especially in Libevent and Epoll. Depending
on buffer sizes, queueing delays vary across stages. Table II
shows the average latency breakdown at 10% and 90% of the
max RPS for each platform.

TABLE III
LATENCY BREAKDOWN OF NGINX IN MILLISECONDS AT DIFFERENT

PERCENTAGE OF MAX RPS.

Xeon ThunderX
10% 95% 10% 95%

Network 9 10 15 15
Epoll 13 10,230 38 12,364

Libevent 11 23,186 12 25,821
Read 1 3 8 19
Open 4 4 14 14

NGINX 12 12 46 46
Send 26 26 73 73
Total 76 33,471 206 38,353

When operating at the same percentage of max RPS, Thun-
derX experience a higher latency than Xeon. At 10% of max
RPS, both servers are underutilized, and there is negligible
queueing delay. The average latency of the Cavium server is
3.35x of the Intel platform because of the processor configu-
ration parameters discussed in Section III-A. When servers
are 90% loaded, batching in Epoll and Libevent result in
significant queueing delays on both platforms, which dominate
the total latency.

An NGINX request experiences the same stages of Network,
Epoll, Libevent, and Read as Memcached. After Read, its
control flow is the following:

1) Request parsing: The content of an NGINX request
is obtained after a Read. Unlike Memcached, NGINX
requests are more complex, and require additional time
for HTTP header formatting and processing. Therefore,
getting to the point of parsing and obtaining the request
type and body takes longer than in Memcached.

2) File lookup: Once a request is parsed, and the requested
file name is obtained, the server accesses the file system
(FS). Instead of incurring the long latencies associated
with FS accesses on every request, NGINX maintains
an open file cache (in ngx http core module [27]) that
holds previously-opened file metadata in memory to
accelerate file lookups. The file cache is maintained as
a red black tree indexed by file name. If the name does
not exist in the tree, it will be inserted upon first access
to speed up later accesses to the same file.

3) Open: The open syscall is then invoked to open and read
the file.

4) Postprocessing: Once the file content is obtained, there
is a second processing phase. This step is heavily depen-
dent on the specific NGINX configuration. For example,
if gzip on is enabled, the file content is compressed
in this step. If access log is enabled, NGINX records
execution traces in a log file.

5) Send: Finally, a response packet is formed, processed
by TCP/IP and sent to the NIC’s TX queue.

As Request parsing, File lookup and Postprocessing are all
user-space processing, and there is no batching in any of these
steps, we combine and denote them as NGINX. Table III shows
the average latency breakdown of NGINX at 10% and 95%

of the max RPS.
Under low load, Epoll, NGINX and Send contribute the

most to latency. The long Epoll latency comes from the time
spent waiting for new requests. NGINX involves more user-
level processing than Memcached, leading to the large NGINX
processing time. Send takes long because of the size of the
requested file (4KB as discussed in Section III-B). Under
high load on the other hand, most of the delay comes from
queueing, with the rest of the parts remaining the same.

1 4 8 12 16 20 24 28
Number of Threads

0

4

8

12

16

20

24

Th
ro

ug
hp

ut
N

or
m

al
iz

ed
to

1
Th

re
ad

ThunderX
Xeon

(a) Memcached

1 4 8 12 16 20 24 28 32 36
Number of Worker Processes

0

4

8

12

16

20

24

28

32

36
Th

ro
ug

hp
ut

N
or

m
al

iz
ed

to
1

W
or

ke
r

(b) NGINX

Fig. 2. Scalability when increasing the number of threads. Each thread
is pinned to a different physical core. Throughput is the maximum RPS
under QoS (99th percentile in 1ms for Memcached and 20ms for NGINX).
Results are normalized to throughput under a single thread on the same
machine. For Memcached, single thread throughput is 144K and 80K on Xeon
and ThunderX respectively. For NGINX, it is 110K and 50K on Xeon and
ThunderX respectively.

B. Scalability (Scale-Up versus Scale-Out)

Memcached and NGINX are both distributed applications
whose datasets are sharded across a large number of ma-
chines [43]. However, given that modern servers are equipped
with tens of cores, and interactive services can benefit from
efficient data sharing across threads of a single machine, we
want to first evaluate the scalability of the examined services
as we increase the number of threads per server (scale up).
Scaling up simplifies cross-thread data sharing, requires fewer
hardware resources, such as memory, and alleviates the issue
of sharding keys across instances for key-value stores like
Memcached. On the other hand, if an application does not
benefit from multithreading, launching multiple application
instances with one thread (or a small number of threads)
each can reduce lock contention, synchronization, and task
stealing among threads. In this case, scaling out is preferred
over scaling a single instance up.

Figure 2 shows the scalability of request throughput as we
increase the number of threads. We pin each thread to a distinct
physical core. We run this experiment on baremetal hardware
to avoid overheads induced by containers or VMs, which are
discussed in Section IV-D. For a given number of threads, we
plot the maximum throughput for which the target QoS is met.

The initial observation from Figure 2 is that ThunderX is
able to scale up further than Xeon. This is because the Xeon
server sustains higher throughput than the ThunderX for the
same number of threads. Therefore, Xeon suffers more from
the synchronization and contention issues discussed below.
The second observation is that both servers cannot fully utilize

the entire socket. Xeon and ThunderX cannot scale further than
16 and 36 cores respectively because they are bottlenecked by
the IRQ cores. The third observation is that NGINX shows
better scalability than Memcached. Memcached is only able
to scale linearly up to 20 threads on ThunderX, and up to 4
threads on Xeon, while NGINX stops scaling linearly after 28
workers on ThunderX and after 8 workers on Xeon. This is
because NGINX has little shared state across threads, allowing
each worker process to work independently.

After the thread count exceeds the thresholds above, further
scaling up does not produce higher throughput. Below we
discuss in more detail the reasons that hinder throughput
scalability when increasing the number of worker threads:

• Interrupt handling: Both servers support receive side
scaling (RSS) [44], which distributes network receive pro-
cessing across multiple hardware-based receive queues.
By configuring the IRQ affinity, traffic for different
queues can be processed on different physical cores. For
example, the NICs of the two test machines both have
8 queues. We therefore exclusively allocate cores 0-7
for network processing. As load increases, we observe
that the IRQ cores become saturated ahead of the cores
servicing regular application worker threads. While the
remaining unallocated cores can still become saturated
by non-network intensive batch jobs, the compute re-
sources needed for network interrupts limit the maximum
throughput for the examined interactive services. This
effect is more severe in Memcached than NGINX because
Memcached requests are simpler, thus its throughput is
higher which causes more burden in network processing.

• Load imbalance: When instantiating a multi-threaded
service, we run the risk of work not being evenly
distributed across the multiple threads. For instance,
Memcached naively allocates a new client connection to
threads in a round-robin way. Requests to different con-
nections are not guaranteed to require equal amounts of
processing. However, the behavior of clients is not known
while setting up connections. This requires rewiring the
way Memcached binds connections to worker threads.

• Lock contention: Memcached is a stateful service. All
the threads share the entire dataset and hash table. Each
item is associated with several counters, such as the
number of accesses, the number of hits and misses, etc.
Such counter accesses are guarded by locks. In NGINX,
locks should be acquired ahead of accessing files. With
more threads, there is a higher probability that several
threads access the same key or file at the same time,
contending for locks.

The issues above show that after the thread count exceeds
an application- and system-dependent threshold, it is more
beneficial to set up multiple instances with a smaller number
of threads each, i.e., scale out.

C. Request Size

Memcached and NGINX are widely deployed in both pri-
vate and public clouds. Request size distributions vary across

4 40 80 120 160 200 240
Key Size (B)

0

100

200

300

400

500

600

700

800

900

La
te

nc
y

(u
se

c)

AVG
99th %ile

(a) Xeon

4 40 80 120 160 200 240
Key Size (B)

0

100

200

300

400

500

600

700

800

900

La
te

nc
y

(u
se

c)

(b) ThunderX

Fig. 3. Impact of Memcached key size. Both Xeon and ThunderX operate at
70% of their respective max RPS.

20B 200B 2KB 20KB 200KB
Value Size

0

5000

10000

15000

20000

La
te

nc
y

(u
se

c)

AVG
99th %ile

(a) Xeon

20B 200B 2KB 20KB 200KB
Value Size

0

5000

10000

15000

20000

La
te

nc
y

(u
se

c)

(b) ThunderX

Fig. 4. Impact of Memcached value size. Both Xeon and ThunderX operate
at 70% of their respective max RPS.

use cases, and can result in substantially different throughput
and latency. Here we focus on the impact of the key and value
size, and the number of items for Memcached, and on the
impact of the file size, and number of files for NGINX.

1) Memcached:

• Key size: Figure 3 shows latencies when sweeping keys
in [4B, 240B]. Latency is barely influenced. Memcached
uses the highly optimized strcmp() function to compare
two keys. In addition, the maximum allowed key size is
restricted to 250B, which is not large enough to cause a
substantial difference in either throughput or latency. For
key sizes of over 200B there is a small increase in tail
latency due to the increased memory traffic.

• Value size: There is no limit for value sizes. Therefore,
we sweep values from 2B to 200KB. As shown in
Figure 4, latencies increase dramatically for larger value
sizes. Memory and network play an important role in this
case. Larger values result in more time spent in memory
copy when forming the response packets. They also lead
to larger network packets, which translates to higher
per packet latency both from processing and queueing,
and lower throughput when the link’s bandwidth limit
is reached. Using Systemtap, we find an increase in the
latency of the Send stage. This increase further leads to
higher queueing delays in Epoll and Libevent.

• Number of items: Figure 5 shows how latency changes
as the number of items increases. When there are only
64K items, with 30B keys and 200B values, the total
dataset size is around 15MB which is less than the LLC
size of both servers. When there are 6.4M items, the
dataset is over 1GB.

64K 1.28M 2.56M 3.84M 5.12M 6.4M
Number of Items

0

2000

4000

6000

8000

10000

La
te

nc
y

(u
se

c)

AVG
99th %ile

(a) Xeon

64K 1.28M 2.56M 3.84M 5.12M 6.4M
Number of Items

0

2000

4000

6000

8000

10000

La
te

nc
y

(u
se

c)

(b) ThunderX

Fig. 5. Impact of the number of Memcached items. Both Xeon and ThunderX
operate at 90% of their respective max RPS.

32B 4KB 6KB 8KB 10KB 12KB
File Size

0

500

1000

1500

2000

2500

3000

3500

4000

La
te

nc
y

(m
se

c)

AVG
99th %ile

(a) Xeon

32B 4KB 6KB 8KB 10KB 12KB
File Size

0

500

1000

1500

2000

2500

3000

3500

4000

La
te

nc
y

(m
se

c)

(b) ThunderX

Fig. 6. Impact of NGINX file size. Both Xeon and ThunderX operate at 80%
of their respective max RPS.

ThunderX is more sensitive to the number of items;
latencies increase with 2.56M items, while latency on
the Xeon server remains low. Cache utilization is linked
to this behavior. Each item is represented as an item
object, whose pointers are frequently used in hash table
lookups, LRU maintenance, item statistics update, etc.
Suppose there are 2.56 million items; we can roughly
estimate that approximately 20MB are needed to store
2.56M 8B pointers (in 64-bit systems). All the pointers
fit in the 55MB LLC of Xeon, but do not fit in the LLC
of ThunderX (16MB).

2) NGINX:
• File Size: Related work has shown that web file size

distributions have a long tail [45]; about 50% of web
files are less than 1KB, 95% are less than 64KB, and the
99th percentile is 32GB. The distribution is also greatly
influenced by the scope of the website. For example,
a personal website typically consists of small text files
and small image files. However, websites on photography
include thousands of multi-MB high-quality pictures.
Figure 7 shows the impact of file size on NGINX.
Similarly to Memcached, larger files lead to higher mem-
ory and network latencies. In addition, large files can
easily saturate the server’s network bandwidth, lowering
throughput. Therefore, for websites serving large static
files, high network bandwidth is more important than
compute resources.

• Number of files: When we only use 1K files, with
4KB each, the total dataset size is approximately 4MB,
which is less than the LLC size of both servers. In
comparison, when there are 300K items, the dataset is

1K 100K 150K 200K 250K 300K
Number of Files

0

1000

2000

3000

4000

5000

La
te

nc
y

(m
se

c)

AVG
99th %ile

(a) Xeon

1K 100K 150K 200K 250K 300K
Number of Files

0

1000

2000

3000

4000

5000

La
te

nc
y

(m
se

c)

(b) ThunderX

Fig. 7. Impact of the number of NGINX files. Both Xeon and ThunderX
operate at 90% of their respective max RPS.

over 1GB. As shown in Figure 7, the number of files
also has a great impact on NGINX latency because
of increased cache thrashing. The open file cache in
ngx http core module [27] can substantially help reduce
the end-to-end request latency for NGINX. The file cache
maintains a red-black tree that stores all file metadata
to speed up file lookups. When the number of files is
small, the entire tree with all its metadata fits in the cache.
However, if open file cache is disabled, the overhead of
frequent accesses to the file system prevents NGINX from
achieving high RPS while meeting QoS.
As with Memcached, latency increases earlier on Thun-
derX than Xeon because of the former’s smaller last-
level cache. Each tree node in the file cache contains
hundreds of bytes, including flags, integers, and strings
for the file path, file size, file descriptor ID, permission
access for files, etc. It also contains a set of pointers
for maintaining the tree structure. When 200K files are
frequently accessed, a tree with 200K nodes requires tens
of MB of space, which fits in the LLC of Xeon, but does
not fit in the LLC of the ThunderX server.

D. Virtualization

Resources in both private and public clouds are almost-
always virtualized [46]. Virtual machines (VM) [47] provide
full virtualization of hardware, and improve security in the
presence of multi-tenancy. Different VMs can also run differ-
ent operating systems (OS) in isolation. If multiple OSes are
not needed, a more lightweight option is OS-level virtualiza-
tion, where the kernel is shared. Linux containers (LXC) are
one of the most popular OS-level virtualization mechanisms.
Containers provide easier software packaging, and support a
variety of hardware as well as software isolation mechanisms
inherited from the Linux kernel. In this paper, we use LXC for
virtualization. To better observe the overhead of virtualization
compared to queueing delays, the CPU utilization of each
server is kept at 10%.

Figure 8 shows the average and 99th percentile tail latency
using containers, normalized to latency on baremetal. We find
that containers introduce high overheads: 1) to tail latency
more than average latency because virtualization creates more
unpredictability in request processing, which affects tail la-
tency more than average; 2) to NGINX more than Memcached
because NGINX involves heavier processing than Memcached;

Xeon ThunderX
1.0

1.1

1.2

1.3

1.4

1.5

1.6

N
or

m
al

iz
ed

 L
at

en
cy

 o
n

C
on

ta
in

er
s

AVG
99th-tile

(a) Memcached

Xeon ThunderX
1.0

1.1

1.2

1.3

1.4

1.5

1.6

N
or

m
al

iz
ed

 L
at

en
cy

 o
n

C
on

ta
in

er
s

(b) NGINX

Fig. 8. Latency when running on containers normalized to baremetal. Both
Xeon and ThunderX operate at 10% of their respective max RPS.

3) to ThunderX more than Xeon because the additional level
of indirection introduced by containers is more cumbersome
for the ThunderX’s weaker cores than for Xeon, as discussed
in Section III-A.

V. WORKLOAD CHARACTERIZATION UNDER
MULTI-TENANCY

Recent studies have proposed colocating latency-critical
(LC) workloads with best-effort tasks in datacenters [1], [2],
[48]. Though potentially improving server utilization, coloca-
tion can either cause LC workloads to suffer from resource
interference, or the performance of best-effort jobs to be
frequently sacrificed. This also prevents colocating two or
more high priority and/or interactive workloads. To address
this issue, it is critical to understand the resource needs of
interactive services. In this section, we use several hardware
and software isolation mechanisms to limit the amount of
allocated resources per-application, and study the impact on
latency. The examined isolation mechanisms are supported
by both platforms, although some operate differently. Apart
from the impact on latency, we also compare the overhead of
isolation mechanisms between the two platforms.

A. Isolation Mechanisms

We use three software and one hardware isolation mecha-
nisms [1]:

1) Software isolation: We use mechanisms provided by
the Linux kernel to partition cores, memory capacity,
and network bandwidth. We use cpuset cgroups to pin
each workload to a set of CPUs. We show that not
only the number, but also the location of CPUs matters
(see Section V-B). memory cgroup is used to restrict
memory capacity. qdisc [50] with hierarchical token
bucket queueing discipline is used to limit the outgoing
network bandwidth. These isolation mechanisms are the
same on the Xeon and ThunderX servers.

2) Hardware isolation: Cache partitioning requires
hardware support. Intel Cache Allocation Technology
(CAT) [51] supports a number of service classes; 16 in
our test machine. With 20 cache ways, each class corre-
sponds to a 20-bit cache way mask. Each CPU is then
bundled to one of the 16 classes. Because of hardware
limitations, the mask can only have consecutive 1s. e.g.,

5 6 7
Number of Cores

102

103

104

105

99
th

%
ile

La
te

nc
y

(u
se

c) 7 Threads
#Threads=#Cores

(a) Xeon

5 6 7
Number of Cores

102

103

104

105

99
th

%
ile

La
te

nc
y

(u
se

c)
(b) ThunderX

Fig. 9. The relationship between the number of threads and cores for
Memcached. Both Xeon and ThunderX operate at 60% of their max RPS.

0x55555 is not allowed. CAT impacts both the cache
allocation and replacement policy.
Unlike Intel CAT, there is no indirection of service
classes on ThunderX. Each core is directly associated
with a way mask, so there can be 48 different cache
way allocations on a 48-core processor. There is no
restriction for consecutive 1s as in Intel CAT. In addition,
cache partitioning only influences cache replacement on
the Cavium board. This helps reduce the wasted cache
space. For example, if the working set of an application
fits in the cache, i.e., there are only compulsory misses,
it will not experience more cache misses with way
partitioning than it would experience without [52].
Way masks on both platforms can be accessed or
changed by reading or writing registers. There are
several tools for accessing hardware registers on X86
platforms, but not for ARM processors. To address this,
we designed a C++ program with inline assembly used
to change hardware registers on both platforms, which
is additionally 8x faster than existing register sampling
tools available for the Xeon server.

We further investigate the overhead of these isolation mech-
anisms by applying each mechanism 10K times. We also
study the overhead of frequent container instantiation and tear-
down. Table IV shows the average overhead of each isolation
mechanism the two platforms.

TABLE IV
OVERHEAD OF ISOLATION MECHANISMS

CPU Cache Memory Network Container Restart

Xeon 6.5ms 1.6ms 6.9ms 2.4ms 0.97s
ThunderX 11.7ms 2ms 11.9ms 3.5ms 1.55s

Except for container restart, all isolation mechanisms take
a few milliseconds. For Memcached whose SLO is in a few
milliseconds, any unnecessary or incorrect isolation decision
contributes to higher tail latency. Frequently killing and in-
stantiating containers, as in serverless settings, should also be
avoided unless necessary as its overhead is in the order of
seconds. In this study, we focus on static isolation before each
run to avoid interference from dynamic partitioning.

4 5 6 7
Number of Cores

100

101

102

103

99
th

%
ile

La
te

nc
y

(m
se

c) 7 Threads
#Threads=#Cores

(a) Xeon

4 5 6 7
Number of Cores

100

101

102

103

99
th

%
ile

La
te

nc
y

(m
se

c)

(b) ThunderX

Fig. 10. The relationship between the number of threads and cores for
NGINX. Both Xeon and ThunderX operate at 60% of their max RPS.

TABLE V
HYPER-THREADING

Load Memcached Nginx
4–4 4–7 7–7 4–4 4–7 7–7

25% 904µs 253µs 242µs 3.6ms 3.1ms 3.0ms
50% - 696µs 524µs - 9.6ms 7.4ms
75% - - 992µs - 703.9ms 8.9 ms

B. Core Isolation

1) Number of threads VS Number of cores: We bring each
application to 60% of their max load. With 7 threads, the
aggregate CPU utilization is less than 500%. We sweep the
number of allocated cores, and examine whether five cores -
operating close to saturation - are sufficient.

Figures 9 and 10 show that fewer cores than the number
of threads result in SLO violations. When multiple threads
are mapped to the same physical core, only one thread can
get executed, increasing latencies of other threads, due to
context switching. We also plot the case of reducing the
number of threads when using fewer cores, which eliminates
the overhead of context switching. The comparison shows that
context switching is one of the dominant factors for latency,
and its overhead is more severe on ThunderX.

2) Benefits of Hyper-threading: The study above does not
make use of the Intel Hyper-Threading Technology, which
enables two threads to run on the same physical core [53].
Hyper-Threading is often disabled in datacenters to reduce
interference between logical cores [54]. We experiment with
the effect of hyper-threading by instantiating 7 threads on the
7 logical cores of 4 physical cores, and comparing against
using 7 logical cores on 7 physical cores. For this experiment,
we focus on Xeon, because hyper-threading is not available
of the ThunderX platform.

Table V compares different uses of hyper-threading. n−m
represents the configuration with n physical cores and m
logical cores. If the target throughput cannot be met, the
corresponding entry is –.

The table shows that Hyper-threading works well if load is
low. Compared to 4–4, configuration 4–7 avoids the overhead
of frequent context switching when sharing logical cores,
and makes better use of compute resources. In fact, Hyper-
threading is more useful when colocating different applications

10% 20% 30% 40% 50% 60% 70%

10% MN MN MN MN MN MN M

20% MN MN MN MN MN M M

30% MN MN MN MN M M M

40% MN MN MN MN M M M

50% MN MN N N

60% N N N

70% N N

10% 20% 30% 40% 50% 60% 70%

10% MN MN MN MN

20% MN MN MN

30% MN MN

40% MN N

50% N N

60% N

70%

�1

(a) Same Logical Core

10% 20% 30% 40% 50% 60% 70%

10% MN MN MN MN MN MN M

20% MN MN MN MN MN M M

30% MN MN MN MN M M M

40% MN MN MN MN M M M

50% MN MN N N

60% N N N

70% N N

10% 20% 30% 40% 50% 60% 70%

10% MN MN MN MN

20% MN MN MN

30% MN MN

40% MN N

50% N N

60% N

70%

�1

(b) Different Logical Cores

Fig. 11. QoS when colocating Memcached and NGINX with and without
Hyper-threading. In Figure 11a application are colocated on the same logical
cores of 7 physical cores. In Figure 11b they are colocated on different logical
cores of 7 physical cores. Each row is a load point of Memcached, and each
column a load point of NGINX. White cells signify that both applications meet
their target QoS. Light grey cells with M or N mean that only Memcached
or NGINX meets its QoS, respectively. Dark grey cells represent that neither
application can meet its target QoS.

TABLE VI
IMPACT OF INTERFERENCE WITH IRQ

Percentage of Max RPS Memcached Nginx
Xeon ThunderX Xeon ThunderX

25% 358µs 397µs 3.4ms 3.9ms
50% 6463µs 30136µs 9.11ms 10.2ms
75% - - 19.1ms 6640ms

on different logical cores of the same physical cores. Figure 11
shows the benefit of colocating Memcached and NGINX on
the same physical cores, but different logical cores. Though
still sharing the limited compute resources, the overhead of
context switching is eliminated.

3) Interference with SoftIRQ cores: As discussed in Sec-
tion IV-B, interrupt handling is an important part of interactive
workloads. A set of cores is usually exclusively reserved
for network interrupts. Using cpuset cgroup, we can further
study the impact of interference caused by interrupts when
workloads are colocated with them.

Table VI shows the tail latency after colocating the interac-
tive services with interrupt cores. We find that (1) Memcached
is more sensitive to interference with IRQ cores. This is
because Memcached usually achieves higher throughput than
NGINX because of its requests being simpler. IRQ cores then
handle more interrupts when running Memcached, creating
more interference. (2) ThunderX is more sensitive to IRQ
interference because of the higher impact of context switching.

C. Cache Sensitivity

The Xeon has a 55MB LLC with 20 cache ways, so the
minimum allocation granularity is 2.75MB. The ThunderX
platform has 16MB LLC with 16 cache ways, therefore cache
space can be controlled at 1MB increments.

Figure 12 shows how latency drops with larger cache
capacity for Memcached. We can infer that about 5MB of data
should be kept in the LLC. As discussed in Section IV-C,
Memcached benefits from LLC if all the item pointers can
be kept in cache. However, with 6.4 million items, all the
pointers take hundreds of MB. Therefore, the LLC is only

useful to keep data not related to Memcached items, including
Memcached statistics, pointers to Memcached LRU lists, etc.

2.75 5.5 8.25 11 13.75 16.5
LLC Capacity (MB)

0

5000

10000

15000

20000

La
te

nc
y

(u
se

c)

AVG
99th %ile

(a) Xeon

1 2 3 4 5 6 7 8 9 10
LLC Capacity (MB)

0

5000

10000

15000

20000

La
te

nc
y

(u
se

c)

(b) ThunderX

Fig. 12. Impact of the LLC capacity for Memcached. Both Xeon and
ThunderX operate at 70% of their max RPS.

5.5 8.25 11 13.75 16.5 19.25
LLC Capacity (MB)

102

103

104

La
te

nc
y

(m
se

c)

AVG
99th %ile

(a) Xeon

1 2 3 4 5 6 7 8 9 10111213141516
LLC Capacity (MB)

101

102

103

104

La
te

nc
y

(m
se

c)

(b) ThunderX

Fig. 13. Impact of the LLC capacity for NGINX. Both Xeon and ThunderX
operate at 80% of their max RPS.

Figure 13 shows the impact of cache capacity for NGINX.
Unlike Memcached, the turning points on Xeon and ThunderX
are quite different. On Xeon, we can infer that the working
set size of NGINX with 100K 4KB files is approximately
16.5MB, which is larger than the LLC of the ThunderX. Given
that the working set size does not fit in the LLC on ThunderX
to begin with and the access pattern is uniform and random,
NGINX is not sensitive to LLC allocation. Latency is higher
with 1-2 cache ways because of conflict misses, but beyond 2
cache ways, latency does not benefit further.

D. Memory Capacity and Network Bandwidth Isolation

Both Memcached and Nginx have a fixed requirement of
memory capacity if their datasets remain unchanged. The
memory needed by Memcached includes the space to store
all keys, values, and hash table entries, plus an additional
fudge factor caused by Memcached’s slab-based memory
management. The memory needed by NGINX includes the
space to store all the files and the open file cache.

Network bandwidth requirements are also fixed, and slightly
higher than throughput ∗ values or filesize , for given datasets
and load.

Neither workload benefits from memory capacities beyond
their dataset sizes, or higher network bandwidth than needed to
transfer response packets. Both services suffer significantly if
either memory capacity or network bandwidth are insufficient,
resulting in 1000x less throughput.

VI. CONCLUSIONS

We presented a detailed study of two representative interac-
tive services, Memcached and NGINX, on an Intel Xeon and
a Cavium ThunderX server platform. We study the impact of
a number of application and system parameters on the average
and tail latency of the two applications, and use resource
isolation mechanisms to study their sensitivity to different
hardware resource availabilities.

Comparisons between the two platforms show that Thun-
derX achieves lower throughput per core, and shows higher
latency and higher overhead to different isolation mechanisms,
due to overheads from context switching, virtualization, and
resource interference. However, ThunderX is still able to meet
the target QoS in most cases, and it shows better thread
scalability, in part because of its higher core count.

VII. ACKNOWLEDGEMENTS

This work was supported in part by a research contract with
Cavium, and by equipment donations from Cavium and Intel.

REFERENCES

[1] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in ISCA-42, 2015.

[2] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with strict
qos for latency-critical workloads,” in ASPLOS, 2014.

[3] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik: Fast
analytical power management for latency-critical systems,” in MICRO,
2015.

[4] X. Liang, M. Nguyen, and H. Che, “Wimpy or brawny cores: A
throughput perspective,” J. Parallel Distrib. Comput., 2013.

[5] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web search
using mobile cores: Quantifying and mitigating the price of efficiency,”
in ISCA-37, 2010.

[6] K. Vaid, “Datacenter power efficiency: Separating fact from fiction,”
Workshop on Power Aware Computing and Systems, 2010.

[7] “Nginx official website,” http://nginx.org.
[8] “Usage statistics and market share of nginx for websites,” https://

w3techs.com/technologies/details/ws-nginx/all/all.
[9] B. Fitzpatrick, “Distributed caching with memcached,” in Linux Journal,

2004.
[10] S. Li, H. Lim, V. W. Lee et al., “Architecting to achieve a billion requests

per second throughput on a single key-value store server platform,” in
ISCA, 2015.

[11] J. Leverich and C. Kozyrakis, “Reconciling high server utilization and
sub-millisecond quality-of-service,” in EuroSys, 2014.

[12] J. Li, N. K. Sharma, and S. D. Ports, Dan RK Gribble, “Tales of the tail:
Hardware, OS, and application-level sources of tail latency,” in SoCC,
2014.

[13] M.-C. Lee, F.-Y. Leu, and Y.-P. Chen, “Cache replacement algorithms
for youtube,” in AINA-28, 2014.

[14] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt,
“Understanding and designing new server architectures for emerging
warehouse-computing environments,” in ACM SIGARCH Computer Ar-
chitecture News, 2008.

[15] M. Coppola, B. Falsafi, J. Goodacre, and G. Kornaros, “From embedded
multi-core socs to scale-out processors,” in DATE, 2013.

[16] J. D. Davis, J. Laudon, and K. Olukotun, “Maximizing cmp throughput
with mediocre cores,” in PACT-14, 2005.

[17] L. Geppert, “Suns big splash: Niagara multiprocessor chip,” IEEE
Spectrum, 2005.

[18] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, and Y. M. Teo, “A
performance study of big data on small nodes,” VLDB, 2015.

[19] U. Hölzle, “Brawny cores still beat wimpy cores, most of the time,”
IEEE Micro, 2010.

[20] A. Putnam, A. M. Caulfield, E. S. Chung et al., “A reconfigurable fabric
for accelerating large-scale datacenter services,” in ISCA-41, 2014.

[21] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in ASPLOS-19, 2014.

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in ISCA-44, 2017.

[23] “Specifications of Intel Xeon E5-2699 v4,” http://ark.intel.com/products/
91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2 20-GHz.

[24] Cavium Inc., “High performance memory caching using thunderx,”
Tirias Research, 2016.

[25] ——, “High performance nginx content delievery using thunderx,” Tirias
Research, 2016.

[26] “Memcached official website,” http://memcached.org.
[27] “Nginx documentation of http core module,” http://nginx.org/en/docs/

http/ngx http core module.html.
[28] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed:

A cautionary tale.” in NSDI, 2006.
[29] Y. Zhang, D. Meisner, J. Mars, and L. Tang, “Treadmill: Attributing

the source of tail latency through precise load testing and statistical
inference,” in ISCA-43, 2016.

[30] “Memcached load generator,” https://github.com/leverich/mutilate.
[31] “Wrk2: A constant throughput, correct latency recording variant of wrk,”

https://github.com/giltene/wrk2.
[32] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet.”

Glottometrics, 2002.
[33] L. Ramaswamy, L. Liu, and A. Iyengar, “Cache clouds: Cooperative

caching of dynamic documents in edge networks,” in ICDCS-25, 2005.
[34] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,

“Workload analysis of a large-scale key-value store,” in SIGMETRICS,
2012.

[35] L. Barroso and U. Hoelzle, The Datacenter as a Computer: An Intro-
duction to the Design of Warehouse-Scale Machines, 2009.

[36] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-
Aware Cluster Management,” in ASPLOS-19, 2014.

[37] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: precise online
qos management for increased utilization in warehouse scale computers,”
in ISCA-40, 2013.

[38] J. Mars and L. Tang, “Whare-map: heterogeneity in ”homogeneous”
warehouse-scale computers,” in ISCA-40, 2013.

[39] “Host server cpu utilization in amazon ec2 cloud,” http://goo.gl/2LTx4T.
[40] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and

J. Wilkes, “Large-scale cluster management at google with borg,” ser.
EuroSys, 2015.

[41] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
EuroSys. 2013.

[42] D. Domingo and W. Cohen, “Systemtap 2.9 systemtap beginners guide,”
2013.

[43] M. Ferdman, A. Adileh, O. Kocberber et al., “Clearing the clouds:
A study of emerging scale-out workloads on modern hardware,” in
ASPLOS, 2012.

[44] I. S. Adapters, “Receive side scaling on intel network adapters.”
[45] A. S. Tanenbaum, J. N. Herder, and H. Bos, “File size distribution on

unix systems: then and now,” SIGOSR, 2006.
[46] R. W. Schmidt and S. Grarup, “Vapp: A standards-based container for

cloud providers,” SIGOSR, 2010.
[47] J. Smith and R. Nair, Virtual machines: versatile platforms for systems

and processes, 2005.
[48] H. Zhu and M. Erez, “Dirigent: Enforcing qos for latency-critical tasks

on shared multicore systems,” in ASPLOS-21, 2016.
[49] “Cgroups,” http://man7.org/linux/man-pages/man7/cgroups.7.html.
[50] M. A. Brown, “Traffic control howto,” http://linux-ip.net/articles/

Traffic-Control-HOWTO/.
[51] “Intel R©64 and IA-32 Architecture Software Developer’s Manual,

vol3B: System Programming Guide, Part 2, September 2014.”
[52] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient fine-grain

cache partitioning,” in ISCA-38, 2011.
[53] D. Marr, F. Binns, D. Hill et al., “Hyper-threading technology in the

netburst R© microarchitecture,” HotChips, 2002.
[54] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid, “Server engineering

insights for large-scale online services,” IEEE Micro, 2010.

