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ABSTRACT
Hardware evolution has been one of the driving factors for
the redesign of database systems. Recently, approximate
storage emerges in the area of computer architecture. It
trades off precision for better performance and/or energy
consumption. Previous studies have demonstrated the ben-
efits of approximate storage for applications that are tolerant
to imprecision such as image processing. However, it is still
an open question whether and how approximate storage can
be used for applications that do not expose such intrinsic
tolerance. In this paper, we study one of the most basic op-
erations in database–sorting on a hybrid storage system with
both precise storage and approximate storage. Particularly,
we start with a study of three common sorting algorithms on
approximate storage. Experimental results show that a 95%
sorted sequence can be obtained with up to 40% reduction
in total write latencies. Thus, we propose an approx-refine
execution mechanism to improve the performance of sorting
algorithms on the hybrid storage system to produce precise
results. Our optimization gains the performance benefits by
offloading the sorting operation to approximate storage, fol-
lowed by an efficient refinement to resolve the unsortedness
on the output of the approximate storage. Our experiments
show that our approx-refine can reduce the total memory
access time by up to 11%. These studies shed light on the
potential of approximate hardware for improving the perfor-
mance of applications that require precise results.

1. INTRODUCTION
Approximate computing [15, 41, 42, 52, 54, 60] is a hot re-

search area that trades the accuracy/precision of application
results for performance and/or energy efficiency. In all the
previous studies [15, 41, 42, 52, 54, 60], approximate com-
puting targets at the applications with intrinsic tolerance to
inaccuracies in computation, such as computer vision and
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image processing. Meanwhile, the idea of approximate com-
puting has been expanded to storage (i.e., approximate stor-
age [36, 54, 48]). Nowadays, the scaling of common mem-
ory technologies like DRAM and flash is approaching its
limit. New memory technologies, such as non-volatile mem-
ory (NVRAM), are emerging. For example, multi-level cell
phase change memory (MLC PCM), the leading contender
among NVRAMs, is shown to be a competitive choice for
databases [47, 12, 27], and other applications [54].

In recent years, several kinds of approximate storage have
been proposed to improve the energy efficiency and perfor-
mance of memory systems [36, 48, 51, 35, 54]. They trade
the precision of results for increased write performance or
reduced energy consumption. A previous study shows 1.7×
improvement on write latencies with quality loss under 10%
for MLC PCM [54]. This is significant in PCM performance,
because write latency issues almost drag the adoption of
PCM reported by previous studies [30, 34]. Approximate
storage also imposes little burden on manufacturers in the
sense that it requires only reasonable modification to the
existing hardware [54].

Despite the performance and power advantage of approxi-
mate hardware, its application scope is limited to the appli-
cations with inherent error tolerances, as in all the previous
studies [15, 41, 42, 52, 54, 60]. Yet, many real applications
are without intrinsic tolerance, which we define to be pre-
cise computing. The results of these applications are often
required to be precise. For example, an imprecision in bank
account storage can lead to millions of dollars in loss. A nat-
ural and challenging question is whether approximate stor-
age can still be used for improving the performance and/or
energy efficiency of precise computing.

In this paper, we study sorting, an important operation
in (database) systems impacting the performance of various
operators and algorithms [32], in the context of approximate
memory. With heavier sorting workloads arising in high per-
formance computing, engines of web indexing, and database
systems, memory performance becomes an increasingly se-
rious problem in conventional sorting algorithms [23]. The
sorting algorithm requires a precisely sorted output, based
on the input data. We conduct our study in two steps.

Step 1. We study the trade-off between sortedness and write
performance if sorting is performed in the approximate
memory only. The results and findings in this step are
considered as the best performance/energy gains that
we can achieve by leveraging approximate memory.

Step 2. To expand traditional approximate computing to a
broader scope, how can we leverage the approximate
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memory to improve the performance of sorting algo-
rithms, but still produce precise results?

Particularly, we revisit three classic and popular sorting al-
gorithms: quicksort, mergesort, and radixsort (the first two
are comparison-based, while the last is not) using approxi-
mate main memory. Simulation results show that without
the requirement of precise outputs, quicksort and radixsort
can get a nearly sorted sequence while reducing 30%− 40%
write latencies on the approximate memory.

Unlike previous studies that focus on approximate com-
puting with approximate hardware, we design a sorting mech-
anism on the hybrid memory system with both precise and
approximate memory for guaranteeing precise results. We
use a novel algorithmic level execution mechanism on hybrid
approximate/precise memory to produce precise results. Specif-
ically, we propose an approx-refine mechanism in which the
approximate memory acts as an accelerator. We first copy
the input data from the precise memory to the approximate
memory, and then perform an existing sorting algorithm on
the approximate memory. Finally, the approximate results
are refined to become precise in the precise memory. If the
sorting algorithm can deliver a nearly sorted output on ap-
proximate memory, only a lightweight refinement is needed
afterwards. As a result, the cost of refinement and data
copies between precise memory and approximate memory
can be compensated by the gain of offloading the sorting
algorithm to the approximate hardware. Our approx-refine
scheme is generally applicable to different sorting algorithms
with little modification. Simulation results show that, up
to 11% write latencies can be saved using the approx-refine
mechanism in hybrid precise/approximate memory. How-
ever, mergesort does not show any benefit under the hybrid
execution. Therefore, approximate storage is not favored by
every sorting algorithm.

This paper has made the following major contributions.
First, we showcase that approximate hardware can also be
used for improving the performance of precise computing,
which broadens the application scope of approximate hard-
ware. Previously, approximate hardware is only used for
approximate computing. Second, we develop and evaluate
common sorting algorithms on the hybrid storage systems
with both precise and approximate storage, and demonstrate
the system and architectural insights of achieving precise
computation on approximate hardware. To the best of our
knowledge, this is the first systematic study of sorting algo-
rithms on approximate storage.

The rest of the paper is organized as follows. Section 2
introduces the approximate memory model. In Section 3, we
study sorting using approximate memory only, without the
requirement of precise results. In Section 4, to produce pre-
cise results, we propose the approx-refine mechanism and
introduce the detailed design of the refinement. Section
5 presents the experimental results using the approx-refine
mechanism. Section 6 reviews the related work. Finally,
Section 7 concludes the paper.

2. BACKGROUND
In this paper, we focus on phase change memory (PCM),

as PCM is a kind of promising NVRAM and is shown to be
a competitive choice for databases [47, 12, 27]. This section
briefly introduces the basics and modeling of precise mem-
ory, and the approximate memory model from Sampson et
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Figure 1: The range of analog values in a precise (a) and approxi-
mate (b) four-level cell. The shaded areas are the target regions for
writes to each level (the parameter T is half the width of a target
region). Unshaded areas are guard bands. The curves show the
probability of reading a given analog value after writing one of the
levels. Approximate MLCs decrease guard bands so the probability
distributions overlap.

in contrast, objects are always stored in precise memory but contain
a pointer to approximate memory where the approximate fields are
stored. This approach incurs an extra memory indirection and the
space overhead of a single pointer per heterogeneous object but can
reduce fragmentation for small objects.

To specify the relative priority of bits within a block, accesses
can also include a data element size. The block is then assumed to
contain a homogenous array of values of this size; in each element,
the highest-order bits are most important. For example, if a program
stores an array of double-precision floating point numbers in a block,
it can specify a data element size of 8 bytes. The memory will
prioritize the precision of each number’s sign bit and exponent over
its mantissa in decreasing bit order. Bit priority helps the memory
decide where to expend its error protection resources to minimize
the magnitude of errors when they occur.

3. APPROXIMATE MULTI-LEVEL CELLS
PCM and other solid-state memories work by storing an analog

value—resistance, in PCM’s case—and quantizing it to expose dig-
ital storage. In multi-level cell (MLC) configurations, each cell
stores multiple bits. For precise storage in MLC memory, there
is a trade-off between access cost and density: a larger number
of levels per cell requires more time and energy to access. Fur-
thermore, protections against analog sources of error like drift can
consume significant error correction overhead [30]. But, where per-
fect storage fidelity is not required, performance and density can be
improved beyond what is possible under strict precision constraints.

An approximate MLC configuration relaxes the strict precision
constraints on iterative MLC writes to improve their performance
and energy efficiency. Correspondingly, approximate MLC writes
allow for denser cells under fixed energy or performance budgets.
Since PCM’s write speed is expected to be substantially slower
than DRAM’s, accelerating writes is critical to realizing PCM as
a main-memory technology [21]. Reducing the energy spent on
writes conserves battery power in mobile devices, where solid-state
storage is commonplace.

Our approach to approximate MLC memory exploits the underly-
ing analog medium used to implement digital storage. Analog reads
and writes are inherently imprecise, so MLCs must incorporate
guard bands that account for this imprecision and prevent storage
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Figure 2: A single step in an iterative program-and-verify write. The
value starts at v1 and takes a step. The curve shows the probability
distribution from which the ending value, v2, is drawn. Here, since
v2 lies outside the target range, another step must be taken.

errors. These guard bands lead to tighter tolerances on target values,
which in turn limit the achievable write performance. Approximate
MLCs reduce or eliminate guard bands to speed up iterative writes
at the cost of occasional errors. Figure 1 illustrates this idea.

3.1 Multi-Level Cell Model
The basis for MLC storage is an underlying analog value (e.g.,

resistance for PCM or charge for Flash). We consider this value
to be continuous: while the memory quantizes the value to expose
digital storage externally, the internal value is conceptually a real
number between 0 and 1.1 To implement digital storage, the cell
has n discrete levels, which are internal analog-domain values corre-
sponding to external digital-domain values. As a simplification, we
assume that the levels are evenly distributed so that each level is the
center of an equally-sized, non-overlapping band of values: the first
level is 1

2n , the second is 3
2n , and so on. In practice, values can be

distributed exponentially, rather than linearly, in a cell’s resistance
range [3,29]; in this case, the abstract value space corresponds to the
logarithm of the resistance. A cell with n = 2 levels is traditionally
called a single-level cell (SLC) and any design with n > 2 levels is
a multi-level cell (MLC).

Writes and reads to the analog substrate are imperfect. A write
pulse, rather than adjusting the resistance by a precise amount,
changes it according to a probability distribution. During reads,
material nondeterminism causes the recovered value to differ slightly
from the value originally stored and, over time, the stored value
can change due to drift [46]. Traditional (fully precise) cells are
designed to minimize the likelihood that write imprecision, read
noise, or drift cause storage errors in the digital domain. That is,
given any digital value, a write followed by a read recovers the same
digital value with very high probability. In approximate storage, the
goal is to increase density or performance at the cost of occasional
digital-domain storage errors.

Put more formally, let v be a cell’s internal analog value. A write
operation for a digital value d first determines ld, the value level
corresponding to d. Ideally, the write operation would set v = ld

precisely. Realistically, it sets v to w(ld) where w is an error function
introducing perturbations from the ideal analog value. Similarly, a
read operation recovers a perturbed analog value r(v) and quantizes
it to obtain a digital output.

The number of levels, n, and the access error functions, w and
r, determine the performance, density, and reliability of the cell.
Current designs trade off performance for density—a dense cell
with many levels requires tighter error functions and is thus typically
slower than sparser cells. Approximate storage cells trade off the
third dimension, reliability, to gain in performance, density, or both.

1At small feature sizes, quantum effects may cause values to appear
discrete rather than continuous. This paper does not consider these
effects.
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and energy efficiency. Correspondingly, approximate MLC writes
allow for denser cells under fixed energy or performance budgets.
Since PCM’s write speed is expected to be substantially slower
than DRAM’s, accelerating writes is critical to realizing PCM as
a main-memory technology [21]. Reducing the energy spent on
writes conserves battery power in mobile devices, where solid-state
storage is commonplace.
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errors. These guard bands lead to tighter tolerances on target values,
which in turn limit the achievable write performance. Approximate
MLCs reduce or eliminate guard bands to speed up iterative writes
at the cost of occasional errors. Figure 1 illustrates this idea.

3.1 Multi-Level Cell Model
The basis for MLC storage is an underlying analog value (e.g.,

resistance for PCM or charge for Flash). We consider this value
to be continuous: while the memory quantizes the value to expose
digital storage externally, the internal value is conceptually a real
number between 0 and 1.1 To implement digital storage, the cell
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logarithm of the resistance. A cell with n = 2 levels is traditionally
called a single-level cell (SLC) and any design with n > 2 levels is
a multi-level cell (MLC).

Writes and reads to the analog substrate are imperfect. A write
pulse, rather than adjusting the resistance by a precise amount,
changes it according to a probability distribution. During reads,
material nondeterminism causes the recovered value to differ slightly
from the value originally stored and, over time, the stored value
can change due to drift [46]. Traditional (fully precise) cells are
designed to minimize the likelihood that write imprecision, read
noise, or drift cause storage errors in the digital domain. That is,
given any digital value, a write followed by a read recovers the same
digital value with very high probability. In approximate storage, the
goal is to increase density or performance at the cost of occasional
digital-domain storage errors.

Put more formally, let v be a cell’s internal analog value. A write
operation for a digital value d first determines ld, the value level
corresponding to d. Ideally, the write operation would set v = ld

precisely. Realistically, it sets v to w(ld) where w is an error function
introducing perturbations from the ideal analog value. Similarly, a
read operation recovers a perturbed analog value r(v) and quantizes
it to obtain a digital output.

The number of levels, n, and the access error functions, w and
r, determine the performance, density, and reliability of the cell.
Current designs trade off performance for density—a dense cell
with many levels requires tighter error functions and is thus typically
slower than sparser cells. Approximate storage cells trade off the
third dimension, reliability, to gain in performance, density, or both.

1At small feature sizes, quantum effects may cause values to appear
discrete rather than continuous. This paper does not consider these
effects.
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Figure 1: Differences between a precise (a) and ap-
proximate (b) multi-level cell (adapted from [54]).

al. [54]. The model from Sampson et al. captures the per-
formance and precision tradeoff on PCM. For more details
on the modeling of PCM, we refer readers to the following
papers: approximate memory modeling [54], unidirectional
shift [67], PCM programming feedback control loop [44], and
successive approximation analog-to-digital-converter (ADC)
for PCM systems [46].

2.1 Modeling Multi-Level Cell
NVRAM stores data as an analog value. For density scal-

ing purpose, multi-level cell (MLC) stores multiple bits in
one cell by dividing the range of the underlying analog value
into more levels than single-level cell (SLC). SLC exposes
only two states (logic “1” and “0”). The target analog range
of each digital level in MLC is narrower than SLC. The mul-
tiple levels are separated by guard bands, which is controlled
by the width of target analog range T as illustrated in Fig-
ure 1(a). The curves in Figure 1(a) show the probability of
the analog value read from a cell after writing to it. In the
precise MLC, the guard band is wide enough to distinguish
two consecutive levels safely.

We adopt the MLC model from Sampson et al. [54], which
abstracts the read/write model of MLC as follows. Let v be
the internal analog value of a cell. In a cell write operation,
a digital value d is first converted to the corresponding ana-
log value vd, Due to the non-determinism of analog writes,
v would then be set to WRITE(vd) instead of vd, where
WRITE is a function to produce an acceptable analog value
by an iterative program-and-verify (P&V) process within a
PCM write. A cell read operation retrieves an analog value
READ(v) and quantizes it to a digital value, where READ
is a function involving the perturbation. In the following,
we present more details on WRITE and READ.

2.1.1 MLC Write
Cell write operations are inherently non-deterministic on

account of the analog nature. Due to process variation
and material fluctuations, a single cell write pulse is usu-
ally insufficient to program the target analog value precisely.
Hence, in both industry and academia, most MLC designs,
including PCM [5, 7, 16, 43, 44, 46] and Flash [57], adopt
an iterative program-and-verify (P&V) process to guarantee
that the analog value is programmed within the exact value
range.

Each write operation first resets the analog value to zero,
and then iteratively performs P&V until the actual ana-
log value reaches the target range (i.e., the grey area in
Figure 1). Pseudo code of a cell write operation is shown
in Function WRITE. The non-determinism of each pro-
gramming iteration can be modeled as a normal distribution
N(µ, σ2) [54]. Positive constant β reflects the disturbance
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of a single programming step. T is an important parame-
ter for the P&V process, and represents the width of target
analog range. Both T and β determine the average number
of programming iterations to finish a cell write.

Function WRITE(vd) (adopted from [54])

Input: vd - the analog value to be programmed
Output: v - the actual analog value after P&V

begin
v ← 0; #P ← 0;
/* This while loop represents P&V process.

The number of iterations #P is inversely

proportional to cell write performance.

*/

while v has not reached [vd − T, Vd + T ] do
v ← v +N(vd − v, |β(vd − v)|) ;
+ +#P ;

end
return v ;

end

2.1.2 MLC Read
Reading from MLC involves retrieving an analog value

and quantizing it. The latency of a quantization is linear in
the number of bits, as suggested by Qureshi et al. [46]. In
practice, cells suffer from variation and unidirectional shift.
The read model of Sampson et al. [54] is given as below.

READ(v) = v +N(µ, σ2) · log10tw

whereN(µ, σ2) represents the variation modeled as a normal
distribution [67], and tw is the time elapsed after the cell
write operation. log10tw is the multiplier on account to drift.
The drift is modeled as the logarithm of time elapsed since
the cell was written.

2.2 Approximate MLC
An approximate MLC configuration reduces the guard

band to provide better write performance and energy ef-
ficiency. The basic idea is to reduce the number of P&V
iterations by increasing the parameter T ; intuitively, larger
target range leads to less latency. Figure 1(b) shows the
differences of an approximate MLC from the precise one.

To study the average number of P&V iterations (#P ) of
MLC with different precisions, we take 4-level MLC as an
example and vary T from 0.025 (almost precise) to 0.125
(no guard band), and for each value of T , we conduct a
Monte-Carlo simulation: writing a random value to a 4-level
MLC cell/a random 32-bit number to sixteen concatenated
2-bit cells, for 100,000,000 times respectively. Fig. 2 shows
the write performance and error rate of 4-level MLC cell.

Overall, the approximate cell model used in this paper
can be simply considered as a probabilistic error model with
parameter T . Varying T implies different trade-offs be-
tween error rate and write performance. When T is small
(T ≤ 0.025), the memory is precise because of the large
guard band. With the increase of T , the guard band shrinks
and errors occur with higher probability, which results in
a smaller #P and hence better write performance. Take
T = 0.1 as an example. The average number of itera-
tions in a P&V process (#P ) is halved in comparison with
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Figure 2: The impact of T on write performance
and accuracy for 2-bit MLC cell (from Monte-Carlo
simulation).

T = 0.025, showing around 50% reduction in cell write la-
tency.

For the analysis in Section 4.3, we define

p(t) =
avg. #P when T = t

avg. #P when T = 0.025
≈ avg #P when T = t

3

as the ratio of the numbers of P&V iterations required on
approximate memory that on precise memory. The lower
p(t) is, the more the write latency is reduced, and the higher
the degree of imprecision in the approximate memory is.

2.3 Interfaces for Approximate Memory
The approximate MLC used in this paper can be pro-

duced by the same manufacturing process as precise MLC,
except for a different analog range width, which piles little
pressure on memory chip manufacturers. Hence, an approx-
imate memory module can be integrated with other precise
modules on the same memory channel.

The programming interfaces and assembly language sup-
port used in this paper are similar to previous literature [54].
Specifically, method approx alloc(size) allocates an array
on approximate memory and returns a pointer. All mem-
ory access statements to an approximate array are compiled
to ld.approx and st.approx. The OS kernel is modified to
allow approx alloc to allocate space only on approximate
DIMMs, and to translate ld/st.approx back to normal ld/st
with approximate array addresses.

We study sorting algorithms on a hybrid memory system
with both precise and approximate memory support. Figure
3 shows how the approximate memory is integrated into the
system. The juxtaposition of precise memory and approxi-
mate memory lies upon the storage system; OS kernel and
assembly language are enhanced to support memory page
allocation and translation of hybrid memory system. CPU
and cache architecture in the case of hybrid memory system
is the same as original system.
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Figure 3: Memory System with Approximate Mem-
ory

3. SORTING IN APPROXIMATE MEMORY
We start with a study of common sorting algorithms on

approximate memory. The entire main memory used in this
section’s experiments is approximate memory; the impre-
cision of approximate memory causes unsortedness in the
output of sorting executions. In this section, we focus on
two issues: 1) how the approximate memory would impair
different sorting algorithms, and 2) the trade-off between
sortedness and write performance.

3.1 Sorting Algorithms
The following three classic sorting algorithms are stud-

ied: mergesort, quicksort and radixsort. Our implementa-
tion has inherited various implementation techniques from
the previous studies (e.g., [6, 4]). To reduce writes, some
of the write-optimized techniques including write combining
by software managed buffers [4] are adopted whenever ap-
propriate. More details are given below. The input data are
assumed to be an array X of n elements (or records).
Mergesort Mergesort is a comparison-based divide-and-
conquer sorting algorithm, and is commonly used in databases.
A mergesort execution on arrayX requires nlog2n data write
operations. At the first level of mergesort, the input chunk
size is designed to fit into the L2 cache.
Quicksort Quicksort is also a commonly used comparison-
based sorting algorithm. On average, it takes nlog2n data
comparisons and nlog2n

2
data writes to sort n items. The

average time complexity of quicksort is O(nlog2n), but its
worst case is O(n2). We implement a randomized quicksort
algorithm. The pivot is chosen randomly to reduce the prob-
ability of worst cases.
Radix sort Radixsort is a non-comparative sorting algo-
rithm which sorts elements by grouping those who share the
same value in some significant position. Two variants are
studied here: Least Significant Digit Radix Sort (LSD) and
Most Significant Digit Radix Sort (MSD). LSD starts from
the least significant digit and moves towards the most sig-
nificant digit, while MSD works the other way around. We
implement a simple version of LSD and MSD using queues
as buckets. We have adopted and tuned multi-pass parti-
tioning in radixsort like the previous study [4]. The number
of bins in each pass for LSD and MSD is an important tuning
parameter, and we evaluate 3-bit, 4-bit, 5-bit and 6-bit for
the study, i.e., with 8, 16, 32 and 64 buckets, respectively.
Unless stated otherwise, LSD and MSD represent 6-bit LSD

L1 cache 32KB, LRU, write through
L2 cache 2MB, 4-way,

LRU, write through
L3 cache 32MB, 8-way, LRU, 10ns

access latency, write through
Main Memory 8GB PCM, 4KB page,

4 ranks of 8-bank each,
32 entries write queue/bank,
8 entries read queue/bank,
read priority scheduling

Precise PCM Latency T=0.025
data read: 50ns,
data write: 1µs

Table 1: Memory simulator parameters

Category Parameter Note
Level L = 4 each cell stores 2 bits

Read
model

µ = 0.067
read fluctuation

σ = 0.027
t = 105s elapsed time for drift

Write
model

β = 0.035 write fluctuation
T = 0.025 precise case: #P=2.98

T ∈ (0.025 . . . 0.125) approximate cases

Table 2: Parameters for precise and approximate
MLC. We reuse the parameter of Sampson et al. [54].

and 6-bit MSD, respectively, since they usually achieve the
best total write latency among different numbers of bins.

3.2 Methodology
As no approximate memory product is available in mar-

ket and no simulator with PCM support is open-source, we
ran experiments using an in-house memory simulator which
models PCM reads and writes in detail. Because of large
data sets, the simulator is trace-driven, where traces are ob-
tained from the actual execution on a real machine. The
machine is configured with Intel Xeon Processor E5-1650
and 8GB DDR3 SDRAM. For simplicity, only one core is
used while collecting memory traces.

Table 1 gives the detailed parameters of our memory sim-
ulator. The settings of those parameters are consistent with
previous literatures [30, 12]. For simplicity, we assume a
write-through cache, which ensures that every data write
must go to the main memory. As write performance is a
dominated factor for sorting algorithms on PCM, we mainly
look at the total latencies spent on memory writes. Table
2 gives the detailed parameters of our MLC PCM modeling
which are inherited from [54]. We use 4-level (2-bit) PCM
cell for our simulation, as 2-bit MLC is the most popular
choice in NAND Flash reported by Micron Inc. [37]. As
suggested in previous studies [8, 38, 54], the raw bit error
rate (RBER) of precise MLC is typically 10−8.

A 32-bit integer is stored in sixteen concatenated 2-bit
cells [54]. Input data contain an array of keys and an array
of payload in the form of integers (i.e., record IDs). The
key values are uniformly distributed 32-bit integers. The
payload (record IDs) is essential in database workloads to
complete the entire query processing according to the sorted
results [49]. In the next section, the record IDs are stored
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in the precise memory, and are used to refine and “recover”
the totally sorted data.

3.3 Measure of Sortedness
Suppose an array of n elements, X, is to be sorted in

increasing order. During the execution in the approximate
memory, the elements of X may become imprecise, and thus
the final X may not be fully sorted. To describe the sort-
edness of a sequence X after sorting in the approximate
memory, we choose the measure Rem [9], which is defined
as

Rem(X) = n−max{k|X has an ascending subseq. of length k}.

Intuitively, Rem indicates the number of elements that should

be removed to produce a sorted sequence. Rem ratio (i.e.,Rem(X)
n

)
should be small if the array X is nearly sorted.

There are other measures of sortedness, as surveyed in the
previous study [20]. Still, we choose the definition of Rem,
because it is more intuitive than other measures like Inv (the
number of inversion pairs in a sequence [20]). It motivates us
to design a lightweight refine algorithm introduced in Section
4.2. More details on how to leverage the sortedness are given
in Section 4.

3.4 Experimental Results
To study the correlation between the proportion of impre-

cise elements and the sortedness (i.e. Rem ratio), we vary
the size of guard band by tuning T to sort 16, 000, 000 (16M)
random integers in the approximate memory. Since our tar-
get is to study the imprecision rather than to recover the
sorted data, the payload array is not accessed in the study
of this section. We define write reduction as the percentage
of total memory write latency saved from using approxi-
mate memory compared with using precise memory only.
More formally, total memory write latency is abbreviated to
TMWL , then

Write Reduction = 1−TMWL using approximate memory

TMWL using precise memory
(1)

When T = 0.025, the guard band is large and the mem-
ory can be considered precise [54]. As mentioned in Section
2.1.1, T should be less than 1

8
to provide guard bands, i.e.,

T < 0.125. We vary T from 0.025 to 0.1. The cases where
T > 0.1 are omitted because the imprecision behavior dom-
inates the execution. Results are shown in Figure 4. The
error rate denotes the proportion of elements in X whose
values deviate from their original values after sorting in the
approximate memory. For all the sorting algorithms, both
error rate and Rem ratio grow rapidly when T > 0.06.

However, as shown in Figure 2(a), the average number of
P&V iterations drops slowly when T > 0.06. Also, write re-
duction is increasing slower with larger T as shown in Figure
4(c). As a result, T should not be tuned to be arbitrarily
large. These results of error and acceleration are consistent
with those in the previous study [54].

To give more intuition, we take n = 160, 000 as an example
and visualize the shape of X after sorting. The results for
larger input sizes (e.g., 16 million) are similar. The initial
X contains 160, 000 random integers, which are uniformly
distributed between 0 and 232 − 1. The goal is to sort the
160, 000 integers in increasing order. We show how X looks
like after the sorting execution in the approximate memory
with different precisions in Figures 5, 6, and 7, when T =

T Quicksort LSD MSD Mergesort
0.03 0.0019% 0.0009% 0.0007% 0.0025%
0.055 1.92% 1.02% 1.00% 55.80%
0.1 96.89% 95.68% 83.82% 99.95%

Table 3: Rem ratio of X after quicksort, LSD, MSD
and mergesort in the approximate memory

0.03, 0.055, and 0.01, respectively. The X-axis of each figure
represents n indexes, which ranges from 1 to n. The Y-axis
is the value of each index after sorting in the approximate
memory. A strictly increasing line represents a fully sorted
sequence.

Table 3 gives the detailed Rem ratio of X after quick-
sort, LSD, MSD and mergesort in the approximate memory.
When T is small, errors hardly occur and X is almost sorted
as shown in Figure 5. As T increases, more errors occur.
When T = 0.055 in Figure 6, write latency is reduced by
33% (shown in Figure 2(a)) while X is still nearly sorted
after quicksort and radixsort with the Rem ratio lower than
2%. The remaining elements are just like noises, and the
amount is relatively small. However, if T keeps increasing,
errors can burst almost exponentially (as observed in Figure
4(a)). When T = 0.1 in Figure 7, though write latency is
reduced by 50%, X is still in chaos after sorting in the ap-
proximate memory, with the high Rem ratio over 90% for
most sorting algorithms.

3.5 Discussions on Different Algorithms
Our study clearly shows that sorting algorithms have very

different behaviors on approximate memory. As shown in
Figure 4(b), Figure 6(d) and Figure 7(d), mergesort exposes
different behavior from quicksort and radixsort, rendering
itself vulnerable to imprecision. The execution of mergesort
starts with divide-and-conquer, and the number of elements
involved in a merge execution increases in later merge runs,
so does the number of imprecise elements. Erroneous be-
haviors caught in the merge execution exacerbate in the last
run, which involves the most imprecise elements, resulting
in a sequence not being able to be labeled as “nearly sorted”.
LSD also has similar behaviors with mergesort, but not all
errors in LSD matter. Unlike mergesort, errors in lower bits
does not cause disorders in later runs because it only looks
at specific bits in each pass. Therefore, LSD is much more
tolerant to imprecision than mergesort.

In contrast, quicksort and MSD have rather smooth trade-
off between imprecision and performance. In each run of
quicksort, if the picked pivot divides the sequence nearly
equally, the first half should be strictly smaller than the sec-
ond half. This fact makes fewer elements involved in later
dividing processes, by which the detrimental effect of an im-
precise element is minimized. The same reason applies to
MSD.

4. SORTING UNDER APPROX-REFINE
Approximate storage is designed for those applications

that do not require accurate results or are tolerant of impre-
cision. However, in many scenarios of sorting, especially in
database applications, the results are required to be precise.
Therefore, unlike existing work in the area of approximate
computing [15, 41, 42, 52, 54, 60], this paper intends to
take advantage of approximate storage while producing pre-
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Figure 4: Sorting 16M random integers in the approximate memory.

(a) Quicksort (b) LSD (c) MSD (d) Mergesort

Figure 5: Sequence X after sorting in the approximate memory when T = 0.03.

(a) Quicksort (b) LSD (c) MSD (d) Mergesort

Figure 6: Sequence X after sorting in the approximate memory when T = 0.055.

(a) Quicksort (b) LSD (c) MSD (d) Mergesort

Figure 7: Sequence X after sorting in the approximate memory when T = 0.1.
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cise results. We propose a mechanism called approx-refine
to refine the approximate outputs to precise results. The
approx-refine mechanism makes use of both approximate
memory and precise memory. Particularly, the previous sec-
tion clearly shows the performance benefits of sorting algo-
rithms on approximate memory, which can generate nearly
sorted output in the approximate memory. We propose a
lightweight refinement stage to transform the nearly sorted
output to a totally sorted output. Also, the total cost of sort-
ing on the approximate memory and the overhead caused by
refinement should be smaller than that of sorting on the pre-
cise memory only. By dividing the sorting algorithm into
multiple stages, we offload the main sorting algorithm to
approximate memory, which is also similar to the concept
of accelerator. In fact, a number of previous studies have
similar designs [25, 28].

During the design and implementation, we take two spe-
cial considerations into account. First, the approx-refine
mechanism should be applicable to an arbitrary sorting al-
gorithm on the precise memory. To the end of our design,
an arbitrary sorting algorithm (e.g., three common sorting
algorithms in our study) can be used as a component in our
approx-refine mechanism. Second, the refinement should be
lightweight and adaptive to the degree of unsortedness. In-
tuitively, the higher the sortedness of the output from the
sorting on approximate memory, the smaller overhead the
refinement stage should incur. In our design, the refinement
scheme of approx-refine is adaptive to Rem (defined in Sec-
tion 3).

4.1 Overview
As precise sorting is often required in applications for data

management purposes where each tuple has a key along with
a record ID. We assume that the input data to be sorted
contains n <Key, ID> pairs, which are stored in two arrays
Key0 and ID. The final precise output should contain a
fully sorted sequence of n <Key, ID> pairs in increasing
order of key values. All the inputs and outputs are stored
in the precise memory. Approximate memory is only used
during the sorting process.

The approx-refine process contains five stages, including
warm-up, approx preparation, approx stage, refine prepara-
tion, and refine stage. We introduce the five stages as fol-
lows. A running example is given in Figure 8.

Warm-up Both Key0 and ID are in the precise memory
initially. This study assumes that the input data is in the
main memory. If the data is initially in the hard disk, we
need to adopt more advanced external memory sorting al-
gorithms [49], for which the proposed approx-refine scheme
can be used in their in-memory sorting steps.

Approx Preparation Array Key0 is copied from precise

memory to approximate memory (denoted as K̃ey). During
this process, some of the keys may become imprecise (e.g.
the sixth element changes from 35 to 32 in Figure 8). That

means, K̃ey is an imprecise version of Key0, and the degree
of imprecision depends on the approximate memory config-
uration. Array ID remains in the precise memory.

Approx Stage We perform a sorting algorithm on K̃ey
together with the corresponding array ID. We study the
three sorting algorithms described in Section 3.1: merge-
sort, quicksort and radix sort. The sorting algorithm we
deploy in this stage is almost the same as the one in the

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	   	  

	  

	  

	  

	  

	  

	  

	   	  

	  

	  

	  

	   	  

	  

	  

ID	   1	   2	   3	   4	   5	   6	   7	   8	  
Key0	   168	   528	   1	   96	   33	   35	   928	   6	  

ID	   1	   2	   3	   4	   5	   6	   7	   8	  
𝐾𝑒𝑦	   168	   528	   1	   96	   33	   32	   928	   6	  

ID	   3	   8	   6	   5	   4	   7	   1	   2	  
𝐾𝑒𝑦	   2	   6	   32	   33	   96	   128	   168	   528	  

ID	   3	   8	   6	   5	   4	   7	   1	   2	  
Key	   1	   6	   35	   33	   96	   928	   168	   528	  

ID	   3	   8	   6	   5	   4	   7	   1	   2	  
Key	   1	   6	   35	   33	   96	   928	   168	   528	  

𝑅𝐸𝑀𝐼𝐷	   6	   7	  

finalID	   3	   8	   5	   6	   4	   1	   2	   7	  
finalKey	   1	   6	   33	   35	   96	   168	   528	   928	  

Warm-‐up	  

Approx	  Preparation	  

Approx	  Stage	  

Refine	  Preparation	  

Approximate	  Memory	   Precise	  Memory	  

Find	  LIS&REM	  

Sort	  REMID	  

Merge	  REMID&LIS	  

Re
fin

e	  
St
ag
e	  

Figure 8: Overview of approx-refine for sorting. Im-
precise elements are marked in bold and italic. Dis-
orders after the approx stage are marked in bold and
underlined.

precise memory, except for memory operations. During the
sorting process, all reads and writes of keys are performed in
the approximate memory, and operations on ID are in the
precise memory. More keys become imprecise with more
writes performed during the process. As a result, disorders
are generated due to the occasional imprecision. For exam-

ple, in Figure 8, Key05 < Key06 but K̃ey5 > K̃ey6 in the
approximate memory, which results in the disorder of their
corresponding IDs (ID5 and ID6).

Refine Preparation After the approx stage, we are only
able to obtain a nearly sorted sequence of keys {Keyi} =
{Key0IDi}. For example, ID3 and ID4 form an inver-
sion pair because Key3 > Key4. In fact, to save more
memory writes, we do not generate array Key in the re-
fine preparation stage. We always make use of array Key0
and {Keyi} = {Key0IDi} to get Key with memory reads.
The notation of Key is only defined for convenience.

Refine Stage The goal of this stage is to adjust Key and
ID to achieve fully sorted results in the precise memory. The
increasing array of key values is denoted as finalKey, and
the corresponding array of record IDs is denoted as finalID.
We give the detailed design of the refine stage in Section 4.2.
This is essentially an off-loading computing model, where
the majority of the sorting algorithm is off-loaded to be per-
formed on approximate memory in Approx Stage.

4.2 Refine Stage
The sequence Key is almost sorted after the approx stage.

Our goal in the refine stage is to design a lightweight algo-
rithm to refine the results with partial disorders and produce
strictly sorted sequences. The algorithm should be efficient
enough with as few memory write operations as possible, as
writes are the dominated cost on NVRAM.

An intuitive solution is to use some adaptive sorting al-
gorithms that benefit from the presortedness in the input
sequence. Many existing adaptive sorting algorithms [20]
benefiting from presortedness target at the asymptotic time
complexity but not the number of memory writes. Thus,
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they typically introduce 3n or even more memory writes (n
is the number of input records). In contrast, our refine algo-
rithm, with a lightweight and efficient heuristics, introduces
fewer than 3n memory writes and has a low time complexity
as well. Note that, intuitively, the lower bound of the num-
ber of memory writes should be 2n, n for keys and another
n for record IDs. The refine algorithm introduced below has
fewer than 3n memory write operations, which is very close
to the lower bound.

The refine stage is further decomposed into 3 steps.

Step 1. Find an ascending subsequence of the maximum length
(also known as Longest Increasing Subsequence (LIS) [55])
in array Key. This step is motivated by Figure 6 and
the measure of sortedness Rem introduced in Section
3.3. LIS is already sorted, while the remaining ele-
ments in Key are not.

Step 2. Sort the remaining elements in Key in increasing or-
der. Together with LIS, we would get two sorted sub-
sequences afterwards.

Step 3. Merge the two sorted subsequences to get the final
sorted sequence.

We now present the implementation details of each step.
Step 1: Find LIS&REM . For simplicity, we denote

LIS as the Longest Increasing Subsequence in Key, and
REM as the remaining elements in Key (the size of REM is
Rem). LISID and REMID are the corresponding record
IDs of LIS and REM . To find LIS and REM , classical al-
gorithms [55] have time complexity of at least O(nlogn) and
introduce at least 2n intermediate outputs to record states
for the optimal solution (costly memory writes). To reduce
the overhead of refinement to the maximum extent, we de-
velop some heuristics to get an approximate LIS (denoted

as L̃IS) with time complexity of O(n) and almost no in-
termediate memory writes. The corresponding approximate
LISID,Rem,REM and REMID under the heuristics are

denoted as L̃ISID, R̃em, R̃EM and ˜REMID. The heuris-
tics make best use of the near-sortedness of Key after the
approx stage and are relatively easy to implement.

1 /*
2 Input:
3 Array ID: all the record IDs after the

approx stage
4 Array Key0: all the original key values

in the precise memory
5 Output:
6 Array REMID to record pairs that are not

in LIS
7 */
8 std::vector <keyType > REMID;
9 LIStail=Key0[ID[1]]; // assume the first key

is in LIS(X)
10 for (i=2; i<n; ++i) {
11 if (Key0[ID[i]]>= LIStail && Key0[ID[i]]<=

Key0[ID[i+1]]) {
12 //Key[i]/Key0[ID[i]] is in approximate

LIS as it forms a non -decreasing
order with its two neighbors ,

13 LIStail=Key0[ID[i]];
14 }
15 else {
16 REMID.push_back(ID[i]);
17 }
18 }

19 if (LIStail >Key0[ID[n]]) {
20 REMID.push_back(ID[n]);
21 }

Listing 1: Find LIS&REM

Listing 1 shows the pseudo code of the first step in the
refine stage. It finds <Key, ID> pairs whose key values are

not in L̃IS, e.g., bold and underlined pairs in Figure 8. The

heuristics to get L̃IS scan ID only once and append a record

ID to ˜REMID if the corresponding key value does not form
an ascending order with its left and right keys. In Figure
8, the third key value 35 and the sixth key value 928 are
greater than their right key values, therefore, the third and

the sixth record IDs are in ˜REMID.
In total, it only introduces Rem intermediate data write

operations in this step. Note that we only record ˜REMID
here to save more intermediate memory writes during the

refine stage. Also, recording ˜REMID is sufficient to get all

information that we need, including R̃EM , L̃IS, L̃ISID.

R̃EM can be easily obtained by {R̃EMi} = {Key0 ˜REMIDi
}

though it introduces an additional data read. However, as a
PCM write is very much slower than a PCM read, it deserves

replacing a PCM write with a PCM read. L̃ISID consists

of all elements in ID except for those in ˜REMID. L̃IS can

then be obtained by {L̃ISi} = {Key0 ˜LISIDi
}

Step 2: Sort ˜REMID. Since Key is almost sorted,
REM is small (|REM | << n) and thus we do not need to
further extract any sorted subsequence from REM . In this

step, we directly sort ˜REMID in increasing order of their
key values. Since |REM | << n, we can choose any reason-

able algorithm to sort ˜REMID, because it does not make
any significant difference. For simplicity, we just use the

sorting algorithm in the approx stage to sort ˜REMID. For
example, if we apply quicksort in the approx stage to sort

n <Key, ID> pairs, we still use quicksort to sort ˜REMID

with R̃em items. If Key is nearly sorted as expected and
our heuristics work well, Rem should be very small and

R̃em ≈ Rem. Thus, the intermediate memory writes during
sorting is negligible comparing to the total write latency in
the approx stage. However, if Key is not nearly sorted, sig-

nificant overhead will be introduced to sort ˜REMID, and
the approximate memory will not act as an accelerator.

1 /*
2 Input:
3 Array Key0: all the original keys in the

precise memory
4 Array ID: all the record IDs after the

approx stage
5 Array REMID after being sorted
6 Output:
7 Array finalKey & finalID: n <Key , ID>

pairs in increasing order of key
values

8 */
9

10 std::set <int > REMIDset;
11 // REMIDset is used to identify LISID later
12 for (i=0; i<REMID.size(); ++i) {
13 REMIDset.insert(REMID[i]);
14 }
15
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16 LISptr =1;
17 REMptr =0;
18 finalptr =1;
19 while (LISptr <=n) {
20 //find the next element in LISID
21 while (LISptr <=n && REMIDset.count(ID[

LISptr ]) >0) ++ LISptr;
22 if (LISptr >n) break;
23 //merge two sorted subsequences
24 if (REMptr <REMID.size() && Key0[REMID[

REMptr]]<Key0[ID[LISptr ]]) {
25 finalID[finalptr ]=REMID[REMptr ];
26 finalKey[finalptr ++]= Key0[REMID[REMptr

++]];
27 }
28 else {
29 finalID[finalptr ]=ID[LISptr ++];
30 finalKey[finalptr ]=Key0[finalID[

finalptr ]];
31 finalptr ++;
32 }
33 }
34 while (REMptr <REMID.size()) {
35 finalID[finalptr ]=REMID[REMptr ];
36 finalKey[finalptr ++]= Key0[REMID[REMptr

++]];
37 }

Listing 2: Merge

Step 3: Merge ˜REMID&L̃ISID. Listing 2 gives the
pseudo code of the final merge step in the refine stage. As

we only have ˜REMID, we need to rescan array ID and

find elements in L̃ISID. This strategy introduces more data
reads but reduces data write operations. This write-limiting
ideology also appears in previous study [63]. The merge step

introduces 2n + R̃em data writes, among which 2n (n for
array finalID and n for array finalKey) are unavoidable.

4.3 Cost Analysis
Though approximate memory trades off precision for per-

formance, the overhead of the refine stage offsets some of
the benefits. We make a mathematical analysis to quan-
tify the benefit that approximate memory brings under the
approx-refine mechanism. Because memory write operations
dominate the total execution time of a sorting algorithm on
NVRAM [12], we analyze the total memory write latency
under the approx-refine mechanism. We compare the re-
sults with sorting entirely in the precise memory to show
the role of approximate memory.

Formally, let

αalg(n) = #memory writes of keys using alg to sort n elements

For instance, suppose sorting is performed entirely in main
memory, αquicksort(n) ≈ nlog2n

2
, αmergesort(n) ≈ nlog2n.

Obviously, αalg(n) is a monotone increasing function of n.
Unlike the write reduction defined by Equation 1 in Sec-

tion 3.4, in the case of the approx-refine mechanism, write
reduction is defined as

Write Reduction = 1− TMWL under approx&refine

TMWL using precise memory
(2)

For simplicity, we assume that the memory write latency
is a constant. Therefore, memory write latency is propor-
tional to the number of memory write operations. There-
fore, if total equivalent number of precise memory writes is

abbreviated to TEPMW , then we define the following func-
tion to represent the write latency reduction of our proposed
approx-refine scheme in comparison with the one running in
the precise memory only.

WRalg(n, t) = 1− TEPMW under approx&refine

TEPMW under traditional sorting
(3)
where one approximate memory operation is equivalent to
p(t) (defined in Section 2.2) precise memory operation, and
traditional sorting is performed using precise memory only.

The total number of writes for traditional sorting in the
precise memory is 2αalg(n): αalg(n) times for key values and
αalg(n) times for record IDs.

As for the approx-refine mechanism, we calculate the effec-
tive number of precise memory write operations in different
stages respectively.

1. In the approx preparation stage, n key write operations
are needed to copy all the keys from precise memory to
approximate memory. The equivalent number of write
operations in the precise memory is p(t)n.

2. In the approx stage, αalg(n) data write operations of
keys in the approximate memory and αalg(n) data
write operations of record IDs in the precise memory
are needed. In total, the equivalent number of write
operations in the precise memory is (p(t) + 1)αalg(n).

3. In the refine stage, all the write operations are per-
formed in the precise memory. The first step of the

refine stage needs R̃em data writes to record ˜REMID.

4. In the second step of the refine stage, αalg(R̃em) data

writes are needed to sort ˜REMID.

5. Finally, R̃em+2n write operations are needed for the
final merge.

In total, during the hybrid execution, (p(t) + 1)αalg(n) +

2R̃em + (2 + p(t))n + αalg(R̃em) effective precise memory
writes are performed.

Finally,

WRalg(n, t) =
1− p(t)

2
− R̃em+ (1 + 0.5p(t))n

αalg(n)
−αalg(R̃em)

2αalg(n)
(4)

Therefore, the effect of our approx-refine mechanism is
related to the guard band of the approximate memory, the
size of dataset, the sorting algorithm, and the effects of our
heuristics. To maximize WR, we definitely hope to mini-

mize p(t) and R̃em. However, given the sorting algorithm

and n, p(t) decreases but R̃em increases with the increase of

t. We will show the trade-off between p(t) and R̃em in the
experiments of Section 5. With obtaining WR in the cost
analysis, we can decide whether the approx-refine approach
on the hybrid memory is better than the sorting algorithm
on precise memory only, and switch between the two ap-
proaches accordingly.

5. EVALUATION OF APPROX-REFINE
In this section, we evaluate the approx-refine mechanism

in hybrid approximate/precise memory, and compare the
results with traditional sorting in the precise memory only.
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We use the same methodology as the simulation studies in
Section 3.2.

We focus on the impact of using approximate memory in
sorting algorithms. We evaluate write reduction (defined by
Equation 2 in Section 4.3) that quantifies the benefit of hy-
brid execution. As analyzed in Section 4.3, write reduction
is determined by the algorithm, the input size and the pre-
cision of approximate memory. Therefore, we evaluate the
influence of T and n under quicksort, mergesort, and radix
sort (LSD, MSD).

Impact of T We vary T from 0.025 to 0.1 at intervals of
0.005, and show the write reduction of all sorting algorithms
with 16M (16,000,000) records in Figure 9. We have the
following observations:

1. Except for mergesort, all the algorithms achieve the
maximum write reduction when T = 0.055. Radix
sort can achieve a maximal write reduction of about
10%, while quicksort achieves write reduction up to
4%. Mergesort does not show any gain using approx-
imate memory, and we have discussed the underlying
reasons in Section 3.5.

2. When T ≤ 0.03, write reduction may be negative be-
cause as shown in Equation 4, p(t) ≈ 1, therefore
1−p(t)

2
≈ 0. Since the remaining two items are always

positive, it is highly possible that write reduction is
negative.

3. When T ≥ 0.07, write reduction may also become
negative because the overhead of refinement is sig-

nificant. Since p(t) ≈ 0 and R̃em ≈ n, we have
1−p(t)

2
− α(R̃em)

2α(n)
≈ 0. As the second item is always

positive, the final write reduction is negative.

4. Both LSD and MSD have slightly decreasing write re-
duction with more bins mainly because the total write
latency decreases and the fixed overhead of copying
keys in approx preparation takes a larger fraction in
the total write latency.
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Figure 9: Relationship between write reduction and
T .

Impact of n In this experiment, we set T = 0.055 be-
cause it produces the largest write reduction for most sort-
ing algorithms. We change the size of input elements n

from 1.6K (16000) to 16M (16,000,000). 3-bit LSD, 3-bit
MSD and quicksort achieve the maximal write reduction of
11%, 10.3% and 4% respectively. From Figure 10, we see
larger write reduction with large n except for LSD, which
partially demonstrates the scalability of the approx-refine
mechanism for most sorting algorithms. Equation 4 in Sec-
tion 4.3 has indicated the scalability.

1. Since αquicksort(n) ≈ nlog2n
2

and R̃em is O(n) (ob-
served from experiments), given t, WRquicksort(n, t)
is a monotone increasing function with respect to n.
Thus, the performance gain of approx-refine increases
for larger inputs in quicksort.

2. Since αMSD(n)
n

is a constant and R̃em is also O(n),
given t, WRMSD(n, t) is a monotone increasing func-
tion with respect to n. Thus, the performance gain of
approx-refine increases for larger inputs in MSD.

3. Like MSD, αLSD(n)
n

is also a constant. However, R̃em
is not O(n) under LSD, which introduces more over-
head in the refine stage. It shows some similar behav-
ior of mergesort as discussed in Section 3.5. There-
fore, given t, WRLSD(n, t) is not a monotone increas-
ing function with respect to n.
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Figure 10: Relationship between write reduction
and n.

We set T = 0.055 and n = 16M , and show the normal-
ized total write latency under the approx-refine mechanism
for each algorithm in Figure 11 (normalized to the write
latency of 3-bit-LSD in the approx stage). Write latencies
are further decomposed into approx and refine. Both LSD
and MSD have smaller total write latencies with more bins
(6-bit achieves the best performance). 6-bit MSD radixsort
and Quicksort are the most efficient sorting algorithms with
the least memory write latencies. The overhead of refine is
negligible except for merge sort.

Summary. We have the following key findings. First, ap-
proximate memory is beneficial for sorting algorithms that
require precise output, with up to 11% of write reduction
in our experiments. The improvement is achieved through
the proposed approx-refine scheme, i.e., taking advantage
of approximate memory as well as a carefully designed and
lightweight refinement stage. Second, sorting algorithms can
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Figure 11: Breakdown of write latencies in approx
and refine stages.

have very different performance behaviours. Radix sort and
quick sort generally acquire reasonable performance gain
whereas using approximate hardware has negative impact
on merge sort.

The performance study can be extended in a couple of
ways. First, we have tested the impact of some of the
more advanced techniques including multithreading, mem-
ory prefetching and non-temporal streaming instructions in
our implementations. We observed insignificant impacts
of these factors. Second, we have extended and evaluated
our approx-refine proposal in another approximate mem-
ory model [51] for energy saving. The preliminary results
demonstrate the energy saving by 13.4%. More details can
be found in Appendix A. Third, since approx-refine has
the flexibility of allowing us to explore other sorting imple-
mentations, we have evaluated an open-source implemen-
tation of radixsort [45] which has used SIMD instructions
extensively and histogram-based implementation. The pre-
liminary results demonstrate the write latency reduction of
around 10%. More details can be found in Appendix B.
Finally, we are further extending a more complete memory
model for approximate memory. Currently, we assume that
the performance of random writes is the same as that of
sequential writes. A more detailed model of PCM should
capture the performance difference between random and se-
quential writes. In the approx stage, most write operations
of the studied algorithms are random writes on PCM. How-
ever, in the refine stage, most writes are instead sequential
writes. With a more detailed model of PCM, the approx-
refine scheme should receive a higher gain of write reduction.

6. RELATED WORK
We review the related work in the following categories: ap-

proximate computing, sorting, and hybrid storage systems.

6.1 Approximate Computing
Approximate computing has attracted a lot of research at-

tention. A large body of previous work has tackled approx-
imate computing from various aspects: from architecture
and hardware design, software and programming language
support, model and tolerance analysis to approximate pro-
cessing in databases. We refer the readers to a recent survey
on approximate computing [26].

Architecture and Hardware Design. Approximate hard-
ware design has been a hot research topic, due to the lim-
ited scaling of hardware. Mohapatra et al. [40] presented

an algorithm/architecture co-design of voltage-scalable, pro-
cess variation aware motion estimator. It leverages a fact in
a video system that, not all computations are equally sig-
nificant. Esmaeilzadeh et al. [18] proposed efficient map-
ping of disciplined approximate programming onto hard-
ware. Venkataramani et al. [62] proposed a design of approx-
imate circuits, an embodiment of quality programmable pro-
cessor architecture [60], and a programmable and quality-
configurable neuromorphic processing engine to execute ap-
proximate neural networks [61]. Sampson et al. [54] pro-
posed approximate storage for non-volatile memory. Rahimi
et al. [48], Lucas et al. [36], Song et al. [35] and Ranjan
et al. [51] explored the energy efficient approximate stor-
age in the context of different memory architectures (such
as associative memristive memory, DRAM, and spintronic
memory). We conjecture that our approx-refine scheme can
be applicable to those approximate memory designs. This
study adopts the approximate memory design from PCM [54].
Also, we focus on how to leverage the approximate memory
to improve the performance of sorting algorithms to produce
precise results.

Software and Programming Language Support. A number
of software and programming systems have been proposed
to exploit the tradeoff on precision and performance/energy
consumption of approximate hardware. Green [3] is a sim-
ple and flexible framework to trade off QoS and energy con-
sumption with controlled approximation. Esmaeilzadeh et
al. [19] defined a programming model which helps offload ap-
proximable code regions to neural processing unit to trade
precision for improved performance. Enerj [53] is proposed
to isolate the approximate part from precise executions us-
ing type qualifiers. ApproxIt [68] is a lightweight quality
estimator which dynamically scales the approximation qual-
ity over successive iterations. Still, most of those studies
focus on applications with intrinsic tolerance to inaccuracy
in computation.

Model and tolerance analysis. Models and tools have been
developed to analyze the resilience of an application to im-
precision. Nair et al.[41, 42] outlined the model and tech-
nique of approximate computing. Chippa et al. [15] pro-
posed a framework to characterize the resilience of applica-
tions. ASAC [52] automatically generates annotations by
sensitivity analysis to allow approximation.

Approximate processing in databases. Approximate query
processing in databases [1, 11, 24, 56, 2] and sensor net-
works [58, 59] mainly leverage pre-computed synopses, sam-
pling engines, or temporal and spatial localities to produce
approximate answers within a certain error bar. Those stud-
ies do not leverage approximate hardware.

6.2 Sorting
The design and implementation of sorting algorithms are

heavily impacted by architectures. They have been revisited
in parallel architectures such as GPUs [25] and FPGAs [33],
and emerging memories such as PCM [63] and Flash [65].
On PCM, write performance is a key problem for sorting,
which involves a lot of memory writes [63]. The refinement
stage in this study is write-optimized, which reduces writes
with reasonably more reads in the design.

Another category of related work to our refinement stage
is adaptive sorting algorithms [9, 39]. Many adaptive al-
gorithms have been developed for nearsortedness [20, 9, 39].
However, they are mostly algorithms with theoretically good
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asymptotic time complexity. They are far more complicated
to implement in practice, and are not optimized with writes.
Thus, we use simple and lightweight heuristics to leverage
the nearsortedness.

6.3 NVRAM and Hybrid Memory Systems
Previous papers have explored PCM as main memory [29,

34]. Recently, researchers have been revisiting database al-
gorithms to better utilize PCM. Chen et al. [12] calibrated
B+-tree and join algorithms to favor PCM. Viglas et al. [63]
proposed a write-limited notion to reduce write operations
of sorts and joins. Chi et al. [14] also proposed to reduce
write operations of B+-tree implementation. Data consis-
tency problems have been addressed for index structures [66,
13]. New on-line transaction processing engines have been
redesigned on NVRAM (e.g., [64, 22]). This paper extends
the scope of PCM to approximate PCM, and proposes an
efficient and general mechanism to provide precise sorting
executions. Our approach is orthogonal to those previous
studies, because approximate memory improves the perfor-
mance by reducing programming iterations of each write op-
eration.

Previously proposed hybrid storage often integrates two
different memories such as PCM/DRAM [31, 50, 21], on/off-
package DRAM [17], and LPDRAM/RLDRAM [10]. Our
hybrid mechanism integrates the same material with differ-
ent precision configuration, only by varying the guard band
range. Memory modules needed by our mechanism are ex-
actly the same in terms of material.

7. CONCLUSIONS
Approximate hardware has become an emerging research

dimension in computer architecture for performance and en-
ergy consumption. Yet, most existing studies on approxi-
mate computing concentrate on applications with intrinsic
tolerance to inaccuracy in computation. This paper argues
that approximate hardware can also be used for improv-
ing the performance of applications with precise output re-
quirement. Specifically, we exploit approximate memory to
reduce write latencies for sorting algorithms on PCMs. We
study how the precision of PCM affects the sortedness of the
final output and propose a novel approx-refine mechanism
to produce precise results. This mechanism first sorts in ap-
proximate storage to get nearly sorted sequences, and then
reorders the sequence in precise storage with a lightweight
recovery heuristics. We have studied three common algo-
rithms including quicksort, merge sort and radix sort. Sim-
ulation results show that the total write latency is reduced
by up to 11%. Sorting algorithms can have very different
performance behaviors on approximate hardware. Radix
sort and quick sort generally acquire reasonable performance
gain whereas using approximate hardware has negative im-
pact on merge sort. Therefore, we conclude that approxi-
mate memory is able to unleash the memory bound of sort-
ing algorithms, and has the potential to be a special ac-
celerator for sorting algorithms. Though system interfaces
should be carefully redesigned to support hybrid approxi-
mate/precise main memory, the modification in hardware is
lightweight and easy to implement.

As for future work, the approx-refine scheme has raised
an interesting design strategy for leveraging approximate
hardware for database systems. This paper makes the first
and important step of utilizing approximate hardware for

database operations. More research efforts have to be made
in the future, e.g., other database operations (such as aggre-
gations) on approximate hardware and reducing the over-
head of refinement stage.
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APPENDIX
A. EVALUATION WITH ANOTHER

APPROXIMATE STORAGE
To demonstrate that our approx-refine mechanism can be

applied to other approximate memory models, we make a
preliminary study by using the model from Ranjan et al [51].
In the following, we briefly introduce the memory model,
followed by the preliminary experimental results.

Approximate Spintronic Memory Model: Spintronic
memory has great potential as future on-chip memories,
which is a kind of NVRAM. Ranjan et al. [51] proposed
an approximate model of spintronic memory to improve its
energy efficiency. By adjusting the voltage and/or current
of the magnetic tunnel junction (MTJ), they can achieve re-
duced read and write energy, resulting in an increased proba-
bility of read and write errors. As the energy consumption of
a write operation can be over an order of magnitude higher
than that of a read operation in spintronic memories, we
mainly focus on the energy saving on writes by adopting the
approximate memory model, and assume that reads are al-
ways precise for simplicity. Particularly, we revisit the three
sorting algorithms on the approximate design of spintronic
memories [51], and study the energy saving of our proposed
approx-refine scheme.

Experimental Results: We explore four different con-
figurations on the tradeoff between energy saving and pre-
cision in the approximate spintronic memory model. For
each memory write operation, the energy consumption sav-
ing per write on the approximate memory is 5%, 20%, 33%
and 50% of the original write energy in precise spintronic
memory, with about 10−7, 10−6, 10−5 and 10−4 write er-
ror probability per bit respectively. The higher energy con-
sumption saving per write, the higher error probability on
the approximate memory.
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Figure 12: Rem ratio under the approximate mem-
ory model [51].

With 16M random 32-bit integers as an input, Figure 12
shows the change of Rem ratio with the percentage of write
energy saving after quicksort, 6-bit LSD, 6-bit MSD and
mergesort. When saving only 5% energy per write, errors
are rare and the input sequence is nearly sorted. However,
when saving 50% energy per write (error rate per bit is about
10−4), the input sequence is still almost random after sorting
in approximate memory. This observation is similar to that
in Section 3.

Figure 13 shows the total write energy saving under differ-
ent write error probabilities after applying our approx-refine
mechanism in the approximate spintronic memory. We set
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Figure 13: Write energy reduction in comparison
with the precise memory model.

n = 16M . Except for mergesort, all the other three algo-
rithms achieve better write energy consumption when the
energy consumption saving of a write operation on the ap-
proximate model is 20% or 33% of the energy consumption
per write on the precise model. Radix sort can achieve a
maximal write energy saving of about 13.4%, while quick-
sort achieves write energy reduction up to 7.5%.
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Figure 14: Breakdown of write energy in approx and
refine stages.

We set the write energy saving per write in approximate
spintronic memory as 33% of the precise write energy and
n = 16M . We show the normalized total write energy con-
sumption under the approx-refine mechanism for each algo-
rithm in Figure 14 (normalized to the write energy of 3-bit-
LSD in the approx stage).

Write energy is further decomposed into approx and re-
fine. We can see that the energy consumption of the refine
stage is mostly negligible except for merge sort.

Summary: This study shows that our approx-refine scheme
can achieve up to 13.4% energy saving on the approximate
spintronic memory model [51]. Through this study, we demon-
strate that our approx-refine mechanism is not restricted to
any specific model, but can be generally applied to many
other approximate memory model.

B. EVALUATION WITH ANOTHER SORT
IMPLEMENTATION

To demonstrate that our approx-refine mechanism is ap-
plicable to other sorting implementation, we make a pre-
liminary study by using an open-source implementation of
radix sort by Polychronious et al. [45]. The implementation
includes both LSD and MSD, which uses SIMD instruction
heavily and also includes a histogram-based scheme for bet-
ter memory locality. We use the same methodology as pre-
sented in Section 3.2.

(a) LSD (b) MSD

Figure 15: Write Reduction of LSD and MSD of
Polychronious’s implementation [45] with approxi-
mate memory model from Sampson et al [53].

We change T from 0.025 to 0.1 and plot the write reduc-
tion of 3-bit to 6-bit LSD and MSD with n = 16M in Figure
15. We have the following observations:

1. All of these algorithms achieve the most write reduction
when T = 0.055 or T = 0.06. This is consistent with
the results of our LSD and MSD implementations.

2. 3-bit LSD and MSD can achieve around 10% write re-
duction. 6-bit LSD and MSD can achieve around 5%
write reduction. The gain is slightly smaller than the
study of LSD and MSD using our own implementa-
tions. We further investigate this performance differ-
ence. This is due to different implementations of radix-
sorts during each pass. The histogram-based scheme
in this implementation further reduces the number of
writes. Therefore, with the same overhead of the refine
stage, there is smaller write reduction in this imple-
mentation. Note that, we have also tested the imple-
mentation by enabling/disabling the SIMD and NUMA
options and get almost the same write reductions.
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