
Performance isolation is an important goal in server-class
environments. Partitioning the last-level cache of a chip
multiprocessor (CMP) across co-running applications has proven
useful in this regard. Two popular approaches are (a) hardware
support for way partitioning, or (b) operating system support for
set partitioning through page coloring. Unfortunately, neither
approach by itself is scalable beyond a handful of cores without
incurring in significant performance overheads.

We propose SWAP, a scalable and fine-grained cache man-
agement technique that seamlessly combines set and way parti-
tioning. By cooperatively managing cache ways and sets, SWAP
(“Set and WAy Partitioning”) can successfully provide hundreds of
fine-grained cache partitions for the manycore era.

SWAP requires no additional hardware beyond way parti- tioning.
In fact, SWAP can be readily implemented in existing commercial
servers whose processors do support hardware way partitioning.
In this paper, we prototype SWAP on a 48-core Cavium ThunderX
platform running Linux, and show average speedups over no
cache partitioning are twice as large as those attained with
hardware way partitioning alone.

Evaluation

Introduction

SWAP: Effective Fine-Grain Management of Shared Last-Level
Caches with Minimum Hardware Support

HPCA 2017
Xiaodong Wang, Shuang Chen,

Jeff Setter, José Martínez

Background

SWAP Design

Combine Set and Way Partitioning

Set	Partitioning

M3 Architecture Research Group
Cornell University

Way	Partitioning

Neither set or way partitioning is fine-grained enough.

Page Frame Number Page Offset

12 bits

OffsetLLC Index
7 bits11 bits

Bank
bits

LLC

Cache setBanks

1. mcf

5

6

4 73

2. twolf 8

P2

P1

P3

P2

P1

P5

P4
P3

P2

P1

P1

Static Partitioning:
1. Offline/online profiling to get cache sensitivity curve of each app.
2. Run lookahead algorithm to find allocation size.
3. Sort and place applications by their classes as follows:

0
0
0
0
0
0
0
0

5
5
5
5
5
5
5
5

8
8
8
8
5
5
5
5

8
8
8
8
8
8
8
8

P1 P1 P1
P2

P3

P2

0
0
0
0
0
0
0
0

P1
P2

2
2
2
2
0
0
0
0

P1

3
3
3
3
1
1
1
1

3
3
3
3
1
1
1
1

P3’

8×6=48

P2
’

4×2=8

P1
’

4×2=8
0
0
0
0
0
0
0
0

P1
P3

P2

9
9
9
9
7
7
7
7

8
8
8
8
8
8
8
8

8
8
8
8
8
8
8
8

8 ways

8
co

lo
rs

8×5=40 4×3=12

4×3=12

P3’

P1
’

P3’ P3’

P1
’

P2
’

(a1) (a2) (a3) (a4)

(b4) (b3) (b2) (b1)

(c1) (c2) (c3) (c4)

Dynamic Repartitioning:
1. ReRun lookahead algorithm to find allocation size.
2. Reset usage counters of each color.
3. Try reusing previous colors as much as possible.

* Partition placement * Memory Pressure * Recolor overhead
* Increased conflict misses in way partitioning.

95 %

100 %

105 %

110 %

115 %

120 %

125 %

130 %

135 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG
40 %

50 %

60 %

70 %

80 %

90 %

100 %

110 %

120 %

N
or

m
al

iz
ed

 L
1

M
is

s
La

te
nc

y

WAY SET SWAP WAY SET SWAPPlatform: 48-core
Cavium ThunderX

Results: Improve
system
throughput by
12-14.5%.

SWAP overhead:
negligible

More potentials:
guarantee QoS
and improve

