

PIMCLOUD: QOS-AWARE RESOURCE MANAGEMENT OF LATENCY-CRITICAL APPLICATIONS IN CLOUDS WITH PROCESSING-IN-MEMORY

Shuang Chen,* Yi Jiang, Christina Delimitrou, José F. Martínez

Cornell University *Currently with Shuhai Lab at Huawei Cloud

Motivation · Characterization · PIMCloud · Evaluation · Conclusions

Cornell University Computer Systems Laboratory

Besteffort

- Throughput-oriented
- No latency constraint

Cornell University Computer Systems Laboratory

Besteffort

GraphLab

Cornell University Computer Systems Laboratory

- Throughput-oriented
- No latency constraint

Google Translate

GraphLab

Cornell University Computer Systems Laboratory

- Throughput-oriented
- No latency constraint

- Tail latency
- Strict QoS constraint

Google Maps

Google Translate

Motivation · Characterization · PIMCloud · Evaluation · Conclusions

Cornell University Computer Systems Laboratory

• More LC applications

Cornell University Computer Systems Laboratory

• More LC applications

Cornell University Computer Systems Laboratory

• LC microservices

• More LC applications

• Colocation of LC applications on the same node

Cornell University Computer Systems Laboratory

Motivation · Characterization · PIMCloud · Evaluation · Conclusions

Heterogeneous computation

Cornell University Computer Systems Laboratory

HARDWARE TRENDS IN CLOUDS

Heterogeneous computation

Cornell University Computer Systems Laboratory

Heterogeneous computation

Heterogenous **memory accesses**

Cornell University Computer Systems Laboratory

PIM-ENABLED CLOUD SERVER

Cornell University Computer Systems Laboratory

PIM-ENABLED CLOUD SERVER

- Low memory latency
- Shallow memory hierarchy

- Wimpy core type
- Varying core count

Cornell University Computer Systems Laboratory

Hardware Trend Emerging PIM Platforms

+ Software Trend Latency-Critical(LC) Cloud Applications

Cornell University Computer Systems Laboratory

PIMCLOUD

Hardware Trend Emerging PIM Platforms

+ **Software Trend** Latency-Critical(LC) Cloud Applications

How can LC applications leverage PIM?

Cornell University Computer Systems Laboratory

Hardware Trend Emerging PIM Platforms + Software Trend Latency-Critical(LC) Cloud Applications

- First study to explore PIM for latency-critical (LC) cloud applications
- Characterization
 - To understand the implications of the PIM architecture to LC applications
- PIMCloud: A QoS-aware resource manager for multiple LC applications in PIMenabled systems
 - Manages PIM-introduced resources

Hardware Trend Emerging PIM Platforms + Software Trend Latency-Critical(LC) Cloud Applications

- The first to explore PIM for latency-critical (LC) cloud applications
- Characterization
 - *To understand the implications of the PIM architecture to LC applications*
- PIMCloud: A QoS-aware resource manager for multiple LC applications in PIMenabled systems
 - Manages PIM-introduced resources

LC APPLICATIONS

Application	Silo Masstree		ImgDNN	Xapian	Moses	Sphinx
Domain	In-memory Database	Key-value store	Image recognition	Web search	Real-time translation	Speech recognition
Target QoS	1 ms	1 ms	7 ms	10 ms	10 ms	6 s
Per-core IPC	1.18	1.09	1.07	1.38	0.99	0.55
LLC MPKI	1.50	6.02	16.78	3.66	23.17	10.40
LLC Miss Rate	2%	12%	45%	37%	77%	47%
Memory Bandwidth (GB/s)	0.32	3.40	7.83	2.58	10.29	2.57
Memory Capacity (GB)	1.8	9.3	0.3	5.6	2.5	1.4

Six diverse LC applications from Tailbench [IISWC'16]

Cornell University Computer Systems Laboratory

LC APPLICATIONS

	Application	Silo	Masstree	ImgDNN	Xapian	Moses	Sphinx
	Domain	In-memory Database	Key-value store	Image recognition	Web search	Real-time translation	Speech recognition
	Target QoS	1 ms	1 ms	7 ms	10 ms	10 ms	6 s
	Per-core IPC	1.18	1.09	1.07	1.38	0.99	0.55
	LLC MPKI	1.50	6.02	16.78	3.66	23.17	10.40
	LLC Miss Rate	2%	12%	45%	37%	77%	47%
Mer	nory Bandwidth (GB/s)	0.32	3.40	7.83	2.58	10.29	2.57
Μ	emory Capacity (GB)	1.8	9.3	0.3	5.6	2.5	1.4

Six diverse LC applications from Tailbench [IISWC'16]

Cornell University Computer Systems Laboratory

- Low memory latency
- Shallow memory hierarchy

- Wimpy core type
- Varying core count

Motivation · Characterization · PIMCloud · Evaluation · Conclusions

Motivation · Characterization · PIMCloud · Evaluation · Conclusions

- Which PIM stack to place each memory page?
- Local VS remote memory access for PIM cores
 - 20ns VS 35ns (VS 62ns from a CPU core)

Characterized ArchitectureIDMemLatCoreMemHie #Cores1HighBrawnyDeep4

•

Cornell University Computer Systems Laboratory

Motivation · Characterization · PIMCloud · Evaluation · Conclusions

		Charact	terized A	Architectu	ire
	ID	MemLat	Core	MemHie	#Cores
	1	High	Brawny	Deep	4
CPU-	2	High	Brawny	Shallow	
centric	3	High	Wimpy	Deep	
	4	High	Wimpy	Shallow	
Un-	5	Low	Brawny	Deep	
realistic	6	Low	Brawny	Shallow	
PIM-	7	Low	Wimpy	Deep	
centric	8	Low	Wimpy	Shallow	

Motivation · Characterization · PIMCloud · Evaluation · Conclusions

		Charact	terized A	Architectu	ire
	ID	MemLat	Core	MemHie	#Cores
	1	High	Brawny	Deep	4
CPU-	2	High	Brawny	Shallow	6
centric	3	High	Wimpy	Deep	10
	4	High	Wimpy	Shallow	16
Un-	5	Low	Brawny	Deep	4
realistic	6	Low	Brawny	Shallow	6
PIM-	7	Low	Wimpy	Deep	10
centric	8	Low	Wimpy	Shallow	16

Motivation · Characterization · PIMCloud · Evaluation · Conclusions

		Characterized Architecture											
	ID	MemLat	Core	MemHie	#Cores								
	1	High	Brawny	Deep	4								
CPU-	2	High	Brawny	Shallow	6								
centric	3	High	Wimpy	Deep	10								
	4	High	Wimpy	Shallow	16								
Un-	5	Low	Brawny	Deep	4								
realistic	6	Low	Brawny	Shallow	6								
PIM-	7	Low	Wimpy	Deep	10								
centric	8	Low	Wimpy	Shallow	16								
PIM	9	Low*	Wimpy	Shallow	8+8								

Motivation · Characterization · PIMCloud · Evaluation · Conclusions

		Characterized Architecture					Tail Latency/QoS Target							
	ID	MemLat	Core	MemHie	#Cores	Silo	Masstree	ImgDNN	Xapian	Moses	Sphinx	AVG		
	1	High	Brawny	Deep	4	0.22	0.21	0.33	0.37	0.26	0.26	0.28		
CPU-	2	High	Brawny	Shallow	6	0.36	0.24	0.28	0.40	0.35	0.29	0.32		
centric	3	High	Wimpy	Deep	10	0.71	0.40	1.29	0.62	0.84	0.56	0.74		
	4	High	Wimpy	Shallow	16	0.74	0.53	1.09	0.63	0.89	0.55	0.74		
Un-	5	Low	Brawny	Deep	4	0.21	0.18	0.25	0.36	0.22	0.23	0.24		
realistic	6	Low	Brawny	Shallow	6	0.28	0.20	0.20	0.37	0.27	0.27	0.26		
PIM-	7	Low	Wimpy	Deep	10	0.59	0.34	0.97	0.59	0.67	0.54	0.62		
centric	8	Low	Wimpy	Shallow	16	0.58	0.40	0.75	0.60	0.66	0.47	0.58		
PIM	9	Low*	Wimpy	Shallow	8+8	0.61	0.47	0.95	0.61	0.77	0.49	0.65		

		Characterized Architecture					Tail Latency/QoS Target							
	ID	MemLat	Core	MemHie	#Cores	Silo	Masstree	ImgDNN	Xapian	Moses	Sphinx	AVG		
	1	High	Brawny	Deep	4	0.22	0.21	0.33	0.37	0.26	0.26	0.28		
CPU-	2	High	Brawny	Shallow	6	0.36	0.24	0.28	0.40	0.35	0.29	0.32		
centric	3	High	Wimpy	Deep	10	0.71	0.40	1.29	0.62	0.84	0.56	0.74		
	4	High	Wimpy	Shallow	16	0.74	0.53	1.09	0.63	0.89	0.55	0.74		
Un-	5	Low	Brawny	Deep	4	0.21	0.18	0.25	0.36	0.22	0.23	0.24		
realistic	6	Low	Brawny	Shallow	6	0.28	0.20	0.20	0.37	0.27	0.27	0.26		
PIM-	7	Low	Wimpy	Deep	10	0.59	0.34	0.97	0.59	0.67	0.54	0.62		
centric	8	Low	Wimpy	Shallow	16	0.58	0.40	0.75	0.60	0.66	0.47	0.58		
PIM	9	Low*	Wimpy	Shallow	8+8	0.61	0.47	0.95	0.61	0.77	0.49	0.65		

• QoS violations only occur in the combinations of wimpy cores and high memory latency

Cornell University Computer Systems Laboratory

		Characterized Architecture				Tail Latency/QoS Target						
	ID	MemLat	Core	MemHie	#Cores	Silo	Masstree	e ImgDNN	Xapian	Moses	Sphinx	AVG
	1	High	Brawny	Deep	4	0.22	0.21	0.33	0.37	0.26	0.26	0.28
CPU-	2	High	Brawny	Shallow	6	0.36	0.24	0.28	0.40	0.35	0.29	0.32
centric	3	High	Wimpy	Deep	10	0.71	0.40	1.29	0.62	0.84	0.56	0.74
	4	High	Wimpy	Shallow	16	0.74	0.53	1.09	0.63	0.89	0.55	0.74
Un-	5	Low	Brawny	Deep	4	0.21	0.18	0.25	0.36	0.22	0.23	0.24
realistic	6	Low	Brawny	Shallow	6	0.28	0.20	0.20	0.37	0.27	0.27	0.26
PIM-	7	Low	Wimpy	Deep	10	0.59	0.34	0.97	0.59	0.67	0.54	0.62
centric	8	Low	Wimpy	Shallow	16	0.58	0.40	0.75	0.60	0.66	0.47	0.58
PIM	9	Low*	Wimpy	Shallow	8+8	0.61	0.47	0.95	0.61	0.77	0.49	0.65

• QoS violations only occur in the combinations of wimpy cores and high memory latency

		Characterized Architecture				Tail Latency/QoS Target						
	ID	MemLat	Core	MemHie	#Cores	Silo	Masstree	e ImgDNN	Xapian	Moses	Sphinx	AVG
	1	High	Brawny	Deep	4	0.22	0.21	0.33	0.37	0.26	0.26	0.28
CPU-	2	High	Brawny	Shallow	6	0.36	0.24	0.28	0.40	0.35	0.29	0.32
centric	3	High	Wimpy	Deep	10	0.71	0.40	1.29	0.62	0.84	0.56	0.74
	4	High	Wimpy	Shallow	16	0.74	0.53	1.09	0.63	0.89	0.55	0.74
Un-	5	Low	Brawny	Deep	4	0.21	0.18	0.25	0.36	0.22	0.23	0.24
realistic	6	Low	Brawny	Shallow	6	0.28	0.20	0.20	0.37	0.27	0.27	0.26
PIM-	7	Low	Wimpy	Deep	10	0.59	0.34	0.97	0.59	0.67	0.54	0.62
centric	8	Low	Wimpy	Shallow	16	0.58	0.40	0.75	0.60	0.66	0.47	0.58
PIM	9	Low*	Wimpy	Shallow	8+8	0.61	0.47	0.95	0.61	0.77	0.49	0.65

- QoS violations only occur in the combinations of wimpy cores and high memory latency
- PIM-centric architectures are able to meet QoS at low load

		Characterized Architecture				Tail Latency/QoS Target						
	ID	MemLat	Core	MemHie	#Cores	Silo	Masstree	e ImgDNN	Xapian	Moses	Sphinx	AVG
	1	High	Brawny	Deep	4	0.22	0.21	0.33	0.37	0.26	0.26	0.28
CPU-	2	High	Brawny	Shallow	6	0.36	0.24	0.28	0.40	0.35	0.29	0.32
centric	3	High	Wimpy	Deep	10	0.71	0.40	1.29	0.62	0.84	0.56	0.74
	4	High	Wimpy	Shallow	16	0.74	0.53	1.09	0.63	0.89	0.55	0.74
Un-	5	Low	Brawny	Deep	4	0.21	0.18	0.25	0.36	0.22	0.23	0.24
realistic	6	Low	Brawny	Shallow	6	0.28	0.20	0.20	0.37	0.27	0.27	0.26
PIM-	7	Low	Wimpy	Deep	10	0.59	0.34	0.97	0.59	0.67	0.54	0.62
centric	8	Low	Wimpy	Shallow	16	0.58	0.40	0.75	0.60	0.66	0.47	0.58
PIM	9	Low*	Wimpy	Shallow	8+8	0.61	0.47	0.95	0.61	0.77	0.49	0.65

- QoS violations only occur in the combinations of wimpy cores and high memory latency
- PIM-centric architectures are able to meet QoS at low load

		Characterized Architecture				Tail Latency/QoS Target						
	ID	MemLat	Core	MemHie	#Cores	Silo	Masstree	e ImgDNN	Xapian	Moses	Sphinx	AVG
	1	High	Brawny	Deep	4	0.22	0.21	0.33	0.37	0.26	0.26	0.28
CPU-	2	High	Brawny	Shallow	6	0.36	0.24	0.28	0.40	0.35	0.29	0.32
centric	3	High	Wimpy	Deep	10	0.71	0.40	1.29	0.62	0.84	0.56	0.74
	4	High	Wimpy	Shallow	16	0.74	0.53	1.09	0.63	0.89	0.55	0.74
Un-	5	Low	Brawny	Deep	4	0.21	0.18	0.25	0.36	0.22	0.23	0.24
realistic	6	Low	Brawny	Shallow	6	0.28	0.20	0.20	0.37	0.27	0.27	0.26
PIM-	7	Low	Wimpy	Deep	10	0.59	0.34	0.97	0.59	0.67	0.54	0.62
centric	8	Low	Wimpy	Shallow	16	0.58	0.40	0.75	0.60	0.66	0.47	0.58
PIM	9	Low*	Wimpy	Shallow	8+8	0.61	0.47	0.95	0.61	0.77	0.49	0.65

- QoS violations only occur in the combinations of wimpy cores and high memory latency
- PIM-centric architectures are able to meet QoS at low load

		Characterized Architecture					ormalized	Max Loa	d (Max	RPS u	nder Q	oS)
	ID	MemLat	Core	MemHie	#Cores	Silo	Masstree	ImgDNN	Xapian	Moses	Sphinx	AVG
	1	High	Brawny	Deep	4	1.00	1.00	1.00	1.00	1.00	1.00	1.00
CPU-	2	High	Brawny	Shallow	6	0.89	0.85	1.17	1.33	1.41	1.25	1.15
centric	3	High	Wimpy	Deep	10	0.68	0.72	0.00	0.87	0.55	1.50	0.72
	4	High	Wimpy	Shallow	16	0.53	0.93	0.00	1.12	1.09	2.25	0.99
Un-	5	Low	Brawny	Deep	4	1.08	1.09	1.20	1.05	1.23	1.20	1.14
realistic	6	Low	Brawny	Shallow	6	1.05	1.00	1.66	1.50	1.82	1.50	1.42
PIM-	7	Low	Wimpy	Deep	10	0.89	0.85	0.71	1.13	0.91	1.75	1.04
centric	8	Low	Wimpy	Shallow	16	0.79	1.15	0.93	1.65	1.82	2.65	1.50
PIM	9	Low*	Wimpy	Shallow	8+8	0.68	1.09	0.63	1.58	1.50	2.50	1.33

		Charact	terized A	Architectu	ıre	No	Normalized Max Load (Max RPS under Qo									
	ID	MemLat	Core	MemHie	#Cores	Silo	Masstree	ImgDNN	Xapian	Moses	Sphinx	AVG				
	1	High	Brawny	Deep	4	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
CPU-	2	High	Brawny	Shallow	6	0.89	0.85	1.17	1.33	1.41	1.25	1.15				
centric	3	High	Wimpy	Deep	10	0.68	0.72	0.00	0.87	0.55	1.50	0.72				
	4	High	Wimpy	Shallow	16	0.53	0.93	0.00	1.12	1.09	2.25	0.99				
Un-	5	Low	Brawny	Deep	4	1.08	1.09	1.20	1.05	1.23	1.20	1.14				
realistic	6	Low	Brawny	Shallow	6	1.05	1.00	1.66	1.50	1.82	1.50	1.42				
PIM-	7	Low	Wimpy	Deep	10	0.89	0.85	0.71	1.13	0.91	1.75	1.04				
centric	8	Low	Wimpy	Shallow	16	0.79	1.15	0.93	1.65	1.82	2.65	1.50				
PIM	9	Low*	Wimpy	Shallow	8+8	0.68	1.09	0.63	1.58	1.50	2.50	1.33				

		Charact	terized .	Architectu	re	Normalized Max Load (Max RPS under Qos									
	ID	MemLat	Core	MemHie	#Cores	Silo	Masstree	ImgDNN	Xapian	Moses	Sphinx	AVG			
	1	High	Brawny	Deep	4	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
CPU-	2	High	Brawny	Shallow	6	0.89	0.85	1.17	1.33	1.41	1.25	1.15			
centric	3	High	Wimpy	Deep	10	0.68	0.72	0.00	0.87	0.55	1.50	0.72			
	4	High	Wimpy	Shallow	16	0.53	0.93	0.00	1.12	1.09	2.25	0.99			
Un-	5	Low	Brawny	Deep	4	1.08	1.09	1.20	1.05	1.23	1.20	1.14			
realistic	6	Low	Brawny	Shallow	6	1.05	1.00	1.66	1.50	1.82	1.50	1.42			
PIM-	7	Low	Wimpy	Deep	10	0.89	0.85	0.71	1.13	0.91	1.75	1.04			
centric	8	Low	Wimpy	Shallow	16	0.79	1.15	0.93	1.65	1.82	2.65	1.50			
PIM	9	Low*	Wimpy	Shallow	8+8	0.68	1.09	0.63	1.58	1.50	2.50	1.33			

•On average, PIM-centric architectures outperform CPU-centric ones

Cornell University Computer Systems Laboratory

12

		Charact	terized	Architectu	ire	Normalized Max Load (Max RPS under Qo									
	ID	MemLat	Core	MemHie	#Cores	Silo	Masstree	ImgDNN	Xapian	Moses	Sphinx	AVG			
	1	High	Brawny	Deep	4	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
CPU-	2	High	Brawny	Shallow	6	0.89	0.85	1.17	1.33	1.41	1.25	1.15			
centric	3	High	Wimpy	Deep	10	0.68	0.72	0.00	0.87	0.55	1.50	0.72			
	4	High	Wimpy	Shallow	16	0.53	0.93	0.00	1.12	1.09	2.25	0.99			
Un-	5	Low	Brawny	Deep	4	1.08	1.09	1.20	1.05	1.23	1.20	1.14			
realistic	6	Low	Brawny	Shallow	6	1.05	1.00	1.66	1.50	1.82	1.50	1.42			
PIM-	7	Low	Wimpy	Deep	10	0.89	0.85	0.71	1.13	0.91	1.75	1.04			
centric	8	Low	Wimpy	Shallow	16	0.79	1.15	0.93	1.65	1.82	2.65	1.50			
PIM	9	Low*	Wimpy	Shallow	8+8	0.68	1.09	0.63	1.58	1.50	2.50	1.33			

On average, PIM-centric architectures outperform CPU-centric ones

- •Up to 52% gain from low memory latency
- •Up to 44% gain from shallow memory hierarchy
- •Up to 5% gain from many wimpy cores

		Charact	terized .	Architectu	ire	Normalized Max Load (Max RPS under Q								
	ID	MemLat	Core	MemHie	#Cores	Silo	Masstree	ImgDNN	Xapian	Moses	Sphinx	AVG		
	1	High	Brawny	Deep	4	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
CPU-	2	High	Brawny	Shallow	6	0.89	0.85	1.17	1.33	1.41	1.25	1.15		
centric	3	High	Wimpy	Deep	10	0.68	0.72	0.00	0.87	0.55	1.50	0.72		
	4	High	Wimpy	Shallow	16	0.53	0.93	0.00	1.12	1.09	2.25	0.99		
Un-	5	Low	Brawny	Deep	4	1.08	1.09	1.20	1.05	1.23	1.20	1.14		
realistic	6	Low	Brawny	Shallow	6	1.05	1.00	1.66	1.50	1.82	1.50	1.42		
PIM-	7	Low	Wimpy	Deep	10	0.89	0.85	0.71	1.13	0.91	1.75	1.04		
centric	8	Low	Wimpy	Shallow	16	0.79	1.15	0.93	1.65	1.82	2.65	1.50		
PIM	9	Low*	Wimpy	Shallow	8+8	0.68	1.09	0.63	1.58	1.50	2.50	1.33		

On average, PIM-centric architectures outperform CPU-centric ones

- •Up to 52% gain from low memory latency
- •Up to 44% gain from shallow memory hierarchy
- •Up to 5% gain from many wimpy cores

Individual applications have different preferences over CPU and PIM

Implications of PIM – Data Placement

Cornell University Computer Systems Laboratory

Implications of PIM – Data Placement

Cornell University Computer Systems Laboratory

Implications of PIM – Data Placement

 Dynamic page manipulation (page migration+replication) is essential to achieve the best performance.

Cornell University Computer Systems Laboratory

LC applications have varying preference to PIM

- At runtime, it is critical to be aware of the heterogeneity, and allocate the right type of resources to each application
- Dynamic data placement is critical to achieve the best performance

Cornell University Computer Systems Laboratory

Hardware Trend Emerging PIM Platforms + Software Trend Latency-Critical(LC) Cloud Applications

- The first to explore PIM for latency-critical (LC) cloud applications
- Characterization
 - To understand the implications of the PIM architecture to LC applications
- PIMCloud: A QoS-aware resource manager for multiple LC applications in PIMenabled systems
 - Manages PIM-introduced resources

Motivation · Characterization · PIMCloud · Evaluation · Conclusions

• The same feedback-control loops as PARTIES [ASPLOS'19]

Cornell University Computer Systems Laboratory

• The same feedback-control loops as PARTIES [ASPLOS'19]

• Upsize/Downsize handles resource adjustment

- Core allocation
 - Core type
 - Core count
- Data placement
 - Pages to migrate/replicate at runtime

PIMCloud – Core Allocation

Cornell University Computer Systems Laboratory

Motivation · Characterization · PIMCloud · Evaluation · Conclusions

Cornell University Computer Systems Laboratory

PIMCloud – Core Allocation

• Main challenge: reduce the allocation space

(a) Preference-oblivious managers: mixed cores for each app.

Cornell University Computer Systems Laboratory

- Main challenge: reduce the allocation space
- Pre-sorting offline
 - A quick offline profiling to obtain each application's preference
 - Sort applications in decreasing preference to PIM

(a) Preference-oblivious managers: mixed cores for each app.

- Main challenge: reduce the allocation space
- Pre-sorting offline
 - A quick offline profiling to obtain each application's preference
 - Sort applications in decreasing preference to PIM
- At runtime
 - Applications are allocated in order
 - The allocation space is the same as a homogeneous setting

(a) Preference-oblivious managers: mixed cores for each app.

- Pre-sorting offline
 - A quick offline profiling to obtain each application's preference
 - Sort applications in decreasing preference to PIM
- At runtime
 - Applications are allocated in order
 - The allocation space is the same as a homogeneous setting

(a) Preference-oblivious managers: mixed cores for each app.

(b) Preference-aware PIMCloud: reduced allocation space, and more saving in cores under the same performance.

- Pre-sorting offline
 - A quick offline profiling to obtain each application's preference
 - Sort applications in decreasing preference to PIM
- At runtime
 - Applications are allocated in order
 - The allocation space is the same as a homogeneous setting

(a) Preference-oblivious managers: mixed cores for each app.

(b) Preference-aware PIMCloud: reduced allocation space, and more saving in cores under the same performance.

(c) PIMCloud at runtime when App2's input load increases: the preference order is maintained.

- Pre-sorting offline
 - A quick offline profiling to obtain each application's preference
 - Sort applications in decreasing preference to PIM
- At runtime
 - Applications are allocated in order
 - The allocation space is the same as a homogeneous setting
- Theoretical analysis in the paper

(a) Preference-oblivious managers: mixed cores for each app.

(b) Preference-aware PIMCloud: reduced allocation space, and more saving in cores under the same performance.

(c) PIMCloud at runtime when App2's input load increases: the preference order is maintained.

Cornell University Computer Systems Laboratory

- Pre-sorting offline
 - A quick offline profiling to obtain each application's preference
 - Sort applications in decreasing preference to PIM
- At runtime
 - Applications are allocated in order
 - The allocation space is the same as a homogeneous setting
- Theoretical analysis in the paper

(a) Preference-oblivious managers: mixed cores for each app.

(b) Preference-aware PIMCloud: reduced allocation space, and more saving in cores under the same performance.

(c) PIMCloud at runtime when App2's input load increases: the preference order is maintained.

Cornell University Computer Systems Laboratory

PIMCloud – Data Placement

- Main challenge: reduce the number of migrated/replicated pages
- Only the hottest pages are manipulated at runtime

Cornell University Computer Systems Laboratory

PIMCloud – Data Placement

- Main challenge: reduce the number of migrated/replicated pages
- Only the hottest pages are manipulated at runtime

Cornell University Computer Systems Laboratory

PIMCloud – Data Placement

- Main challenge: reduce the number of migrated/replicated pages
- Only the hottest pages are manipulated at runtime

Cornell University Computer Systems Laboratory

Simulator: ZSim

- CPU: 4 Haswell-like cores, 2.4 GHz, 32KB L1, 256KB L2, 8MB L3
- PIM: 8 ARM Cortex-A57-like cores per memory stack, 2 GHz, 32KB L1
- Extend the memory model to HBM

»16 vaults, 160GB/s peak memory bandwidth

Applications: Tailbench

- 20 threads
- 20s warmup, 10s execution (about 72 billion cycles)
- Run on 8 Haswell-like cores by default

Baselines:

- **Default**: relying on the OS to manage resources
- AMS [MICRO'18]: a scheduler for batch jobs in PIM systems
- Octopus-Man [HPCA'15]: a scheduler for LC apps in systems with heterogeneous cores

Colocation of Xapian, ImgDNN and Masstree at various input loads.

% 10	55	50	45	45	X	95	95	90	80	X	95	95	95	15	X	95	95	95	85	X	^{100%} ≦
UN 30	50	45	40	35	Χ -	95	95	Х	Х	X	95	95	15	Х	X	95	95	45	35	X	80% × og
பு பி பி	50	40	20	5	X	X	Х	Х	Х	X	35	30	15	Х	X	65	40	40	5	X	
jo 70	25	15	Х	Х	X	X	Х	Х	Х	X	×	Х	Х	Х	X	30	15	15	Х	X	40% Mass
00 Load	5	Х	Х	Х	X	X	Х	Х	Х	X	X	Х	Х	Х	X	10	Х	Х	Х	X	
,	10	30	50	70	90	10	30	50	70	90	10	30	50	70	90	10	30	50	70	90	-0%
	Loa	ad of	Хар	oian ((%)	Loa	ad of	Xap	bian	(%)	Loa	ad of	Хар	ian	(%)	Loa	ad of	Хар	ian ((%)	
			(b)) AN	ΛS		(c)	Oct	ορι	ıs-N	lan	(0	d) P	IMC	lou	d					

Colocation of Xapian, ImgDNN and Masstree at various input loads.

% 10	55	50	45	45	X	95	95	90	80	X	95	95	95	15	X	95	95	95	85	X			
N 30	50	45	40	35	X	95	95	Х	Х	X	95	95	15	Х	X	95	95	45	35	X			
ြို့ ၁၀	50	40	20	5	X	X	Х	Х	Х	Χ -	35	30	15	Х	X	65	40	40	5	X			
 70 م	25	15	Х	Х	X	X	Х	Х	Х	X	X	Х	Х	Х	X	30	15	15	Х	X			
00 PO	5	Х	Х	Х	X	X	Х	Х	Х	X	X	Х	Х	Х	X	10	Х	Х	Х	X	20% stree		
	10	30	50	70	90	10	30	50	70	90	10	30	50	70	90	10	30	50	70	90	□0%		
	Load of Xapian (%)							Load of Xapian (%)					Load of Xapian (%)					Load of Xapian (%)					
	(a) Default) AN	ΛS		(c)	Oct	ορι	ıs-N	lan	(0	d) P	IMC	lou	d			

PIMCloud outperforms all the baselines

- Core isolation: better than *Default*
- Adjust core count based on load: better than AMS
- Preference-aware: better than Octopus-Man
- Manage data placement: better than all the baselines

Evaluation - Scalability

Cornell University Computer Systems Laboratory

Evaluation - Scalability

Convergence time doesn't increase exponentially with more apps / larger systems
Worst case convergence time is 20s

• Convergence time is less than 10s more than 70% of the time.

Cornell University Computer Systems Laboratory

- Colocation of 2 LC apps at various input load
- Colocation of 2 LC apps and a BE job at various input load
- Decomposition of PIMCloud
- Dynamic load

SUMMARY

Motivation

- Increasingly important LC applications that will be colocated on the same node
- Increasingly heterogeneous cloud platforms
 - Especially PIM that brings heterogeneity to computation and memory at the same time

PIMCloud

- Characterization of LC applications on PIM
 - More than half of the LC applications perform better on PIM than on CPU
- A QoS-aware and PIM-aware resource manager for LC applications in PIM-enabled systems
 - Leverages preference to reduce the allocation space down to a homogeneous setting
 - Manipulates only hot pages at runtime

PIMCLOUD: QOS-AWARE RESOURCE MANAGEMENT OF LATENCY-CRITICAL APPLICATIONS IN CLOUDS WITH PROCESSING-IN-MEMORY

Thanks! Q & A

Offline discussion: chenshuang0804@gmail.con