
RETAIL: OPTING FOR LEARNING SIMPLICITY TO ENABLE QOS-
AWARE POWER MANAGEMENT IN THE CLOUD

Shuang Chen,* Angela Jin,** Christina Delimitrou, José F. Martínez

Cornell University
*Currently with Shuhai Lab at Huawei Cloud

** Currently with UCBerkeley

INTERACTIVE LATENCY-CRITICAL (LC) SERVICES

2

Motivation• Characterization• ReTail • Evaluation • Conclusions

INTERACTIVE LATENCY-CRITICAL (LC) SERVICES

2

Motivation• Characterization• ReTail • Evaluation • Conclusions

▪QoS defined in tail latency (e.g., 99th percentile)

TAIL LATENCY OF INTERACTIVE LC APPLICATIONS

3

Motivation• Characterization• ReTail • Evaluation • Conclusions

▪QoS defined in tail latency (e.g., 99th percentile)

TAIL LATENCY OF INTERACTIVE LC APPLICATIONS

3

Motivation• Characterization• ReTail • Evaluation • Conclusions

Happy	==	(Latency<=1s)

▪QoS defined in tail latency (e.g., 99th percentile)

TAIL LATENCY OF INTERACTIVE LC APPLICATIONS

Average: 1s
99th percentile: 1.9s

0.1s

0.1s

1.9s

1.9s

1.9s

0.1s

3

Motivation• Characterization• ReTail • Evaluation • Conclusions

Happy

Happy

Angry

Happy

Angry

Angry
Happy	==	(Latency<=1s)

▪QoS defined in tail latency (e.g., 99th percentile)

TAIL LATENCY OF INTERACTIVE LC APPLICATIONS

Average: 1s
99th percentile: 1s

Average: 1s
99th percentile: 1.9s

0.1s

0.1s

1.9s

1.9s

1.9s

0.1s

1s

1s

1s

1s

1s

1s

3

Motivation• Characterization• ReTail • Evaluation • Conclusions

Happy

Happy

Angry

Happy

Angry

Angry

Happy

Happy

Happy

Happy

Happy

Happy
Happy	==	(Latency<=1s)

▪QoS defined in tail latency (e.g., 99th percentile)

TAIL LATENCY OF INTERACTIVE LC APPLICATIONS

Average: 1s
99th percentile: 1s

Average: 1s
99th percentile: 1.9s

0.1s

0.1s

1.9s

1.9s

1.9s

0.1s

1s

1s

1s

1s

1s

1s

3

Motivation• Characterization• ReTail • Evaluation • Conclusions

Happy

Happy

Angry

Happy

Angry

Angry

Happy

Happy

Happy

Happy

Happy

Happy
Happy	==	(Latency<=1s)

MOTIVATION

4

QoS Target

tail

median

Motivation• Characterization• ReTail • Evaluation • Conclusions

MOTIVATION

▪ Application-level resource management
• Conventional resource managers manage each application as a whole

4

QoS Target

tail

median

Motivation• Characterization• ReTail • Evaluation • Conclusions

MOTIVATION

▪ Application-level resource management
• Conventional resource managers manage each application as a whole

4

QoS Target

tail

median

Motivation• Characterization• ReTail • Evaluation • Conclusions

MOTIVATION

▪ Application-level resource management
• Conventional resource managers manage each application as a whole

▪ Request-level resource management
• Make each request just meet QoS

» Assign high frequency to the core running long requests
» Assign low frequency to the core running short requests

• Higher resource/power efficiency

4

QoS Target

tail

median

Motivation• Characterization• ReTail • Evaluation • Conclusions

MOTIVATION

▪ Application-level resource management
• Conventional resource managers manage each application as a whole

▪ Request-level resource management
• Make each request just meet QoS

» Assign high frequency to the core running long requests
» Assign low frequency to the core running short requests

• Higher resource/power efficiency

▪ How to know if a request is
short or long?

4

QoS Target

tail

median

Motivation• Characterization• ReTail • Evaluation • Conclusions

PRIOR WORK

5

Motivation• Characterization• ReTail • Evaluation • Conclusions

PRIOR WORK

• Adrenaline [MICRO’15]: feature-driven
» E.g., if request type is SET, increase frequency
☹ Handpicked features for specific applications
☹ Cannot distinguish requests in the same category

5

Motivation• Characterization• ReTail • Evaluation • Conclusions

PRIOR WORK

• Adrenaline [MICRO’15]: feature-driven
» E.g., if request type is SET, increase frequency
☹ Handpicked features for specific applications
☹ Cannot distinguish requests in the same category

• Gemini [MICRO’20]: feature-driven, neural-network-based
» Predicted latency > QoS, increase frequency
☹Handpicked features for websearch

5

Motivation• Characterization• ReTail • Evaluation • Conclusions

PRIOR WORK

• Adrenaline [MICRO’15]: feature-driven
» E.g., if request type is SET, increase frequency
☹ Handpicked features for specific applications
☹ Cannot distinguish requests in the same category

• Gemini [MICRO’20]: feature-driven, neural-network-based
» Predicted latency > QoS, increase frequency
☹Handpicked features for websearch

5

Is it possible to predict request latency for a general LC application?

Motivation• Characterization• ReTail • Evaluation • Conclusions

LC APPLICATIONS

6

▪ Investigate if it is possible to predict latency for 7 diverse LC applications

Motivation• Characterization• ReTail • Evaluation • Conclusions

TABLE I: Latency-critical applications.
Application Masstree ImgDNN Sphinx Xapian Moses Shore Silo

Domain Key-value store Image
recognition

Speech
recognition Web search Real-time

translation
Database

(disk/SSD)
Database

(in-memory)

Dataset One million
<key,value> pairs MNIST [21] CMU AN4 [11] English Wikipedia Spanish

articles [6] TPC-C [16], 1 warehouse

QoS Target 1ms 5ms 4s 8ms 120ms 5ms 1ms
Median:Tail Ratio 0.84 0.81 0.36 0.27 0.26 0.25 0.19

Request
90% <GET, key>
10% <PUT, key,

value>

An image with a
handwritten digit

Path to an
audio file A single-word term

A Spanish phrase
to be translated

into English

47% PAYMENT
45% NEW ORDER

4% ORDER STATUS
4% STOCK LEVEL

Classification Little or no
variation

Little or no
variation

Predicted by
request features

Predicted by
application features

Predicted by
request features

Predicted by request and
application features

Feature(s) N.A. N.A. Audio file size Document count Word count Request type, Item count, Rollback

(a) Masstree (b) ImgDNN (c) Sphinx (d) Xapian (e) Moses (f) Shore (g) Silo
Fig. 2: CDF of service time. Median and 99th-percentile latency are marked by green stars and red circles.

(a) Moses (b) Sphinx
Fig. 3: Correlation between various interpretations of request length and request
service time. Each blue dot represents one request sample.

(a) Shore (b) Silo
Fig. 4: CDF of service time of each request type.

request packets, we look into intermediate variables in each
application, i.e., application features.

1) Xapian: Fig. 6a shows four major steps during Xapian’s
request processing. In the first step, we find an intermediate
variable titled term frequency, which correlates strongly with
service time, as shown in Fig. 5a. Term frequency represents
the number of documents matched to a searched term. Intu-
itively, the more matched documents, the longer it takes to
retrieve and sort the documents (step 2&3 in Fig. 6a).

2) NEW ORDER in Shore and Silo: a new order is entered
into the database, by first creating an order header and then
inserting a new row to the ORDER LINE table for each
ordered item [16] (Fig. 6b). Upon user data entry errors,
the transaction is rolled back. Therefore, request service time
depends on (a) if the transaction is rolled back, which incurs
additional operations to remove previously inserted rows, and
(b) the number of ordered items, since both ordering items and
rollback primarily consist of a for-loop with #items iterations.
Fig. 5b shows that Shore’s processing times of these two steps
each increases with the item count, but at different rates. Since
Silo and Shore have similar application logic (but different
underlying implementations to store data), the features that
correlate with service time are the same.

3) STOCK LEVEL in Shore and Silo: A STOCK LEVEL
request examines the stock level of all the items on the last
20 orders; it first examines all items on the last 20 orders, and

(a) Xapian (b) NEW ORDER (c) STOCK LEVEL
Fig. 5: Correlation between application features and service time.

0 20 40 60 80 100
Time (%)

Query Preparation
Document Retrieval
Document Sorting
Response Preparation

Document Count Obtained

(a) Xapian

0 20 40 60 80 100
Time (%)

Create Order Header
Order Items
Rollback

Item count obtained
Rollback obtained

(b) NEW ORDER

0 20 40 60 80 100
Time (%)

Examine Items
Examine Stock Level

Item count obtained

(c) STOCK LEVEL
Fig. 6: Lifetime of a request.

then examine each distinct item’s stock level [16] (Fig. 6c).
Fig. 5c shows that processing time increases with the number
of distinct items, as it takes longer to examine the stock level
of all the items.

4) Timeliness of application features: Unlike request fea-
tures, application features are obtained during request process-
ing, which means that latency cannot be inferred before request
processing. Luckily, application features in Xapian, Silo and

3

LC APPLICATIONS

6

▪ Investigate if it is possible to predict latency for 7 diverse LC applications
• Request latency = service time + queuing delay

Motivation• Characterization• ReTail • Evaluation • Conclusions

TABLE I: Latency-critical applications.
Application Masstree ImgDNN Sphinx Xapian Moses Shore Silo

Domain Key-value store Image
recognition

Speech
recognition Web search Real-time

translation
Database

(disk/SSD)
Database

(in-memory)

Dataset One million
<key,value> pairs MNIST [21] CMU AN4 [11] English Wikipedia Spanish

articles [6] TPC-C [16], 1 warehouse

QoS Target 1ms 5ms 4s 8ms 120ms 5ms 1ms
Median:Tail Ratio 0.84 0.81 0.36 0.27 0.26 0.25 0.19

Request
90% <GET, key>
10% <PUT, key,

value>

An image with a
handwritten digit

Path to an
audio file A single-word term

A Spanish phrase
to be translated

into English

47% PAYMENT
45% NEW ORDER

4% ORDER STATUS
4% STOCK LEVEL

Classification Little or no
variation

Little or no
variation

Predicted by
request features

Predicted by
application features

Predicted by
request features

Predicted by request and
application features

Feature(s) N.A. N.A. Audio file size Document count Word count Request type, Item count, Rollback

(a) Masstree (b) ImgDNN (c) Sphinx (d) Xapian (e) Moses (f) Shore (g) Silo
Fig. 2: CDF of service time. Median and 99th-percentile latency are marked by green stars and red circles.

(a) Moses (b) Sphinx
Fig. 3: Correlation between various interpretations of request length and request
service time. Each blue dot represents one request sample.

(a) Shore (b) Silo
Fig. 4: CDF of service time of each request type.

request packets, we look into intermediate variables in each
application, i.e., application features.

1) Xapian: Fig. 6a shows four major steps during Xapian’s
request processing. In the first step, we find an intermediate
variable titled term frequency, which correlates strongly with
service time, as shown in Fig. 5a. Term frequency represents
the number of documents matched to a searched term. Intu-
itively, the more matched documents, the longer it takes to
retrieve and sort the documents (step 2&3 in Fig. 6a).

2) NEW ORDER in Shore and Silo: a new order is entered
into the database, by first creating an order header and then
inserting a new row to the ORDER LINE table for each
ordered item [16] (Fig. 6b). Upon user data entry errors,
the transaction is rolled back. Therefore, request service time
depends on (a) if the transaction is rolled back, which incurs
additional operations to remove previously inserted rows, and
(b) the number of ordered items, since both ordering items and
rollback primarily consist of a for-loop with #items iterations.
Fig. 5b shows that Shore’s processing times of these two steps
each increases with the item count, but at different rates. Since
Silo and Shore have similar application logic (but different
underlying implementations to store data), the features that
correlate with service time are the same.

3) STOCK LEVEL in Shore and Silo: A STOCK LEVEL
request examines the stock level of all the items on the last
20 orders; it first examines all items on the last 20 orders, and

(a) Xapian (b) NEW ORDER (c) STOCK LEVEL
Fig. 5: Correlation between application features and service time.

0 20 40 60 80 100
Time (%)

Query Preparation
Document Retrieval
Document Sorting
Response Preparation

Document Count Obtained

(a) Xapian

0 20 40 60 80 100
Time (%)

Create Order Header
Order Items
Rollback

Item count obtained
Rollback obtained

(b) NEW ORDER

0 20 40 60 80 100
Time (%)

Examine Items
Examine Stock Level

Item count obtained

(c) STOCK LEVEL
Fig. 6: Lifetime of a request.

then examine each distinct item’s stock level [16] (Fig. 6c).
Fig. 5c shows that processing time increases with the number
of distinct items, as it takes longer to examine the stock level
of all the items.

4) Timeliness of application features: Unlike request fea-
tures, application features are obtained during request process-
ing, which means that latency cannot be inferred before request
processing. Luckily, application features in Xapian, Silo and

3

LC APPLICATIONS

6

▪ Investigate if it is possible to predict latency for 7 diverse LC applications
• Request latency = service time + queuing delay
• Find features that correlate with service time

Motivation• Characterization• ReTail • Evaluation • Conclusions

TABLE I: Latency-critical applications.
Application Masstree ImgDNN Sphinx Xapian Moses Shore Silo

Domain Key-value store Image
recognition

Speech
recognition Web search Real-time

translation
Database

(disk/SSD)
Database

(in-memory)

Dataset One million
<key,value> pairs MNIST [21] CMU AN4 [11] English Wikipedia Spanish

articles [6] TPC-C [16], 1 warehouse

QoS Target 1ms 5ms 4s 8ms 120ms 5ms 1ms
Median:Tail Ratio 0.84 0.81 0.36 0.27 0.26 0.25 0.19

Request
90% <GET, key>
10% <PUT, key,

value>

An image with a
handwritten digit

Path to an
audio file A single-word term

A Spanish phrase
to be translated

into English

47% PAYMENT
45% NEW ORDER

4% ORDER STATUS
4% STOCK LEVEL

Classification Little or no
variation

Little or no
variation

Predicted by
request features

Predicted by
application features

Predicted by
request features

Predicted by request and
application features

Feature(s) N.A. N.A. Audio file size Document count Word count Request type, Item count, Rollback

(a) Masstree (b) ImgDNN (c) Sphinx (d) Xapian (e) Moses (f) Shore (g) Silo
Fig. 2: CDF of service time. Median and 99th-percentile latency are marked by green stars and red circles.

(a) Moses (b) Sphinx
Fig. 3: Correlation between various interpretations of request length and request
service time. Each blue dot represents one request sample.

(a) Shore (b) Silo
Fig. 4: CDF of service time of each request type.

request packets, we look into intermediate variables in each
application, i.e., application features.

1) Xapian: Fig. 6a shows four major steps during Xapian’s
request processing. In the first step, we find an intermediate
variable titled term frequency, which correlates strongly with
service time, as shown in Fig. 5a. Term frequency represents
the number of documents matched to a searched term. Intu-
itively, the more matched documents, the longer it takes to
retrieve and sort the documents (step 2&3 in Fig. 6a).

2) NEW ORDER in Shore and Silo: a new order is entered
into the database, by first creating an order header and then
inserting a new row to the ORDER LINE table for each
ordered item [16] (Fig. 6b). Upon user data entry errors,
the transaction is rolled back. Therefore, request service time
depends on (a) if the transaction is rolled back, which incurs
additional operations to remove previously inserted rows, and
(b) the number of ordered items, since both ordering items and
rollback primarily consist of a for-loop with #items iterations.
Fig. 5b shows that Shore’s processing times of these two steps
each increases with the item count, but at different rates. Since
Silo and Shore have similar application logic (but different
underlying implementations to store data), the features that
correlate with service time are the same.

3) STOCK LEVEL in Shore and Silo: A STOCK LEVEL
request examines the stock level of all the items on the last
20 orders; it first examines all items on the last 20 orders, and

(a) Xapian (b) NEW ORDER (c) STOCK LEVEL
Fig. 5: Correlation between application features and service time.

0 20 40 60 80 100
Time (%)

Query Preparation
Document Retrieval
Document Sorting
Response Preparation

Document Count Obtained

(a) Xapian

0 20 40 60 80 100
Time (%)

Create Order Header
Order Items
Rollback

Item count obtained
Rollback obtained

(b) NEW ORDER

0 20 40 60 80 100
Time (%)

Examine Items
Examine Stock Level

Item count obtained

(c) STOCK LEVEL
Fig. 6: Lifetime of a request.

then examine each distinct item’s stock level [16] (Fig. 6c).
Fig. 5c shows that processing time increases with the number
of distinct items, as it takes longer to examine the stock level
of all the items.

4) Timeliness of application features: Unlike request fea-
tures, application features are obtained during request process-
ing, which means that latency cannot be inferred before request
processing. Luckily, application features in Xapian, Silo and

3

CHARACTERIZATION – FEATURE SPACE

▪Request features
• Request size, request type, etc.
• Obtained at request arrival

▪Application features
• Intermediate variables
• Obtained during request processing

7

Motivation• Characterization• ReTail • Evaluation • Conclusions

CHARACTERIZATION – REQUEST SIZE

8

Motivation• Characterization• ReTail • Evaluation • Conclusions

CHARACTERIZATION – REQUEST SIZE

8

• Real-time translation
• Input request:

a Spanish phrase

Motivation• Characterization• ReTail • Evaluation • Conclusions

CHARACTERIZATION – REQUEST SIZE

8

• Real-time translation
• Input request:

a Spanish phrase

• Speech recognition
• Input request:

a path to an audio file

Motivation• Characterization• ReTail • Evaluation • Conclusions

CHARACTERIZATION – REQUEST TYPE

9

• Database (disk/in-memory)
• Input request: TPCC
• ORDER_STATUS and PAYMENT have little-to-no variation
• NEW_ORDER and STOCK_LEVEL require further investigation

Shore Silo

Motivation• Characterization• ReTail • Evaluation • Conclusions

CHARACTERIZATION – APPLICATION FEATURES

10

• Web search
• Input: a search term

Motivation• Characterization• ReTail • Evaluation • Conclusions

CHARACTERIZATION - SUMMARY

11

Motivation• Characterization• ReTail • Evaluation • Conclusions

CHARACTERIZATION - SUMMARY

▪ All the applications have intuitive features that correlate strongly with request
service time

11

Motivation• Characterization• ReTail • Evaluation • Conclusions

CHARACTERIZATION - SUMMARY

▪ All the applications have intuitive features that correlate strongly with request
service time

▪ The correlation relationship is very simple

11

Motivation• Characterization• ReTail • Evaluation • Conclusions

CHARACTERIZATION - SUMMARY

▪ All the applications have intuitive features that correlate strongly with request
service time

▪ The correlation relationship is very simple

▪ Classify applications into four categories
• Little-to-no-variation: ImgDNN, Masstree
• Predicted by request features: Moses, Sphinx
• Predicted by application features: Xapian
• Combination: Shore, Silo

11

Motivation• Characterization• ReTail • Evaluation • Conclusions

CHARACTERIZATION - SUMMARY

▪ All the applications have intuitive features that correlate strongly with request
service time

▪ The correlation relationship is very simple

▪ Classify applications into four categories
• Little-to-no-variation: ImgDNN, Masstree
• Predicted by request features: Moses, Sphinx
• Predicted by application features: Xapian
• Combination: Shore, Silo

11

We	can	build	a	simple and effective latency	prediction	model	
	for	a	general	LC	application!

Motivation• Characterization• ReTail • Evaluation • Conclusions

RETAIL

▪ ReTail: Request-level Latency Prediction to Reduce Tail Latency
▪ QoS-aware power management for LC apps with request-level latency prediction

▪ ReTail feature selection
• Selects the features that best correlate with request service time
• General to any LC application

▪ ReTail latency prediction
• Linear regression

▪ ReTail QoS-aware power management
• Decides the best frequency for each request

12

Motivation• Characterization• ReTail • Evaluation • Conclusions

RETAIL FEATURE SELECTION

13

Motivation• Characterization• ReTail • Evaluation • Conclusions

RETAIL FEATURE SELECTION

▪ Input: a log with
• User-provided-set of N samples
• A menu of features for each request sample

» Request features such as request type, request size, etc
» Potential intermediate variables in the application

– Leverage tracing and logging statements in the source code

13

Motivation• Characterization• ReTail • Evaluation • Conclusions

RETAIL FEATURE SELECTION

▪ Input: a log with
• User-provided-set of N samples
• A menu of features for each request sample

» Request features such as request type, request size, etc
» Potential intermediate variables in the application

– Leverage tracing and logging statements in the source code

▪ Output: the best features that correlate the most with request service time

13

Motivation• Characterization• ReTail • Evaluation • Conclusions

RETAIL FEATURE SELECTION

▪ Input: a log with
• User-provided-set of N samples
• A menu of features for each request sample

» Request features such as request type, request size, etc
» Potential intermediate variables in the application

– Leverage tracing and logging statements in the source code

▪ Output: the best features that correlate the most with request service time
▪ Selection procedure:

• Sort all the features in decreasing order of their correlation degree
» Numerical feature: Pearson correlation coefficient
» Categorical feature: the square of correlation ratio

• Select the first feature
• Select one more feature at a time until correlation degree doesn’t improve thereafter

13

Motivation• Characterization• ReTail • Evaluation • Conclusions

RETAIL LATENCY PREDICTION

▪ Categorization and Linear regression
• Most relationships are categorical or linear

14

Motivation• Characterization• ReTail • Evaluation • Conclusions

TABLE IV: Quantitative comparison of three prediction models: linear regression, Gemini’s neural network model (NN-Gemini),
and an optimized NN model (NN-Tuned) which requires careful hand-tuning for each application.

Model Info Overhead Accuracy
#Layer #Neuron/layer #Epoch Batch size Training Inference R2 RMSE RMSE/QoS

Xapian
Linear Regression N.A. 0.003s 5µs 0.959 0.334ms 4.18%

NN-Gemini 5 128 15 32 9.7s 363µs 0.973 0.270ms 3.38%
NN-Tuned 1 16 5 32 0.98s 107µs 0.974 0.264ms 3.30%

Moses
Linear Regression N.A. 0.003s 5µs 0.854 3.622ms 3.02%

NN-Gemini 5 128 500 32 85.1s 514µs 0.833 3.867ms 3.22%
NN-Tuned 1 4 400 1024 0.74s 258µs 0.854 3.617ms 3.01%

Sphinx
Linear Regression N.A. 0.003s 5µs 0.746 217.929ms 5.45%

NN-Gemini 5 128 1000 32 36.15s 344µs 0.747 217.396ms 5.43%
NN-Tuned 3 128 700 32 15.39s 300µs 0.747 217.474ms 5.43%

• Training overhead: The time it takes to train the model,
which is less important if the model is trained offline. How-
ever, LC applications usually experience inevitable system
interference and/or dynamic resource allocations; both affect
service time and model accuracy. The prediction model only
captures application-level sources of latency variation, and
has to be updated or completely retrained online upon such
model drifts. Models with high training time will be unable
to quickly adapt to such environment changes at runtime
and will result in longstanding QoS violations.

• Inference overhead: Time to get a latency prediction. Since
the model will be triggered for each request, keeping infer-
ence overhead negligible to the request latency is critical.

We start from linear regression, one of the simplest ap-
proaches to model relationship between variables, fitted using
the ordinary least squares (OLS) method which minimizes the
sum of squared residuals [21, 25]. As shown in Table IV,
linear regression achieves pretty high accuracy: R2 is close to
1, and the prediction error (RMSE/QoS) is less than 6%. We
find various advantages of the simple linear regression model:

1) Our characterization study of six diverse applications
shows that the relationship between features and service
time is rather simple. Red solid lines in Figure 5 and 6a
show the request service time prediction for Moses, Sphinx,
and Xapian. The good alignment between each line and the
scatterplot trend shows that the simple linear regression
model clearly captures each application’s service times.

2) Due to its simplicity, linear regression incurs minimal
training and inference overheads. Training takes only 3ms,
making online retraining very affordable. Inference takes
only 5µs, negligible to most LC applications.

3) The process to build a linear regression model is gen-
eralizable across applications. A linear regression model
consists of a number of variables and their coefficients.
Once features are selected through ReTail feature selection,
each feature corresponds to a variable. Coefficients are
automatically calculated through training.

4) Linear regression is easily explainable, which, as opposed
to the ML black-box model, can lend itself to insights for
software optimizations. For instance, Xapian’s service time
increases almost linearly with term frequency. Given this,
we could split a large request in two, each with a smaller
term frequency, to reduce the service time of large requests.

Despite these advantages, more complicated models may
further improve accuracy. Taking Xapian as an example, the
scatterplot in Figure 6a shows a slightly concave trend. We
further investigate Xapian’s request processing and depict
results in Figure 7. Suppose term frequency is t. Then, the
time complexity of query and response preparation are O(1)
each, of document retrieval is O(t), and of document sorting
is O(t ⇥ logt). We attribute the curved scatterplot pattern to
the document sorting time complexity.

We also explore neural networks (NN), known for their
ability to identify almost any underlying relationship between
variables. Linear regression and NN fall at the two ends on
the spectrum: the former being simple but potentially less
accurate, and the latter being complicated but more powerful.
Comparing these models helps us understand the tradeoff
between accuracy and overhead when predicting service times.

NN-based request latency prediction was proposed in very
recent work, Gemini [49]. Gemini’s NN model has 5 hidden
layers and 128 neurons/layer. It uses the ReLU activation
function and MSE (mean-square error) loss function. Table IV
shows the performance of the Gemini’s NN model (shown as
NN-Gemini), using the same input features as linear regres-
sion. We implement NN in PyTorch [43]. We observe some
accuracy improvement for Xapian, visualized in Fig. 6b: NN-
Gemini captures the concave nature between term frequency
and service time. However, the zigzag pattern around term
frequency = 450 indicates that the model is slightly overfitting.
Because Gemini is designed for Apache Lucene Search [1], the
exact NN model proposed cannot be generalized to other LC
applications. We also find negligible accuracy improvement for
Moses and Sphinx, but more than 3000⇥ increase in training
time and more than 60⇥ increase in inference time.

Therefore, we manually tune the NN model for each LC
application to find the configuration with the least overhead
without losing accuracy. We first choose a large epoch at
which accuracy has converged. Then, in the following order,
we tune batch size, the number of hidden layers, the number
of neurons per layer, and the number of epochs to reduce the
training overhead while maintaining accuracy. Table IV shows
the results of our hand-tuned optimized NN model, shown
as NN-Tuned. Sometimes, accuracy even increases because
smaller NN structures reduce the likelihood of overfitting, as
demonstrated by Xapian and Moses. Figure 6c also shows that
the line is smoother under NN-Tuned. Training and inference

6

RETAIL LATENCY PREDICTION

▪ Categorization and Linear regression
• Most relationships are categorical or linear
• Comparison with neural networks

14

Motivation• Characterization• ReTail • Evaluation • Conclusions

TABLE IV: Quantitative comparison of three prediction models: linear regression, Gemini’s neural network model (NN-Gemini),
and an optimized NN model (NN-Tuned) which requires careful hand-tuning for each application.

Model Info Overhead Accuracy
#Layer #Neuron/layer #Epoch Batch size Training Inference R2 RMSE RMSE/QoS

Xapian
Linear Regression N.A. 0.003s 5µs 0.959 0.334ms 4.18%

NN-Gemini 5 128 15 32 9.7s 363µs 0.973 0.270ms 3.38%
NN-Tuned 1 16 5 32 0.98s 107µs 0.974 0.264ms 3.30%

Moses
Linear Regression N.A. 0.003s 5µs 0.854 3.622ms 3.02%

NN-Gemini 5 128 500 32 85.1s 514µs 0.833 3.867ms 3.22%
NN-Tuned 1 4 400 1024 0.74s 258µs 0.854 3.617ms 3.01%

Sphinx
Linear Regression N.A. 0.003s 5µs 0.746 217.929ms 5.45%

NN-Gemini 5 128 1000 32 36.15s 344µs 0.747 217.396ms 5.43%
NN-Tuned 3 128 700 32 15.39s 300µs 0.747 217.474ms 5.43%

• Training overhead: The time it takes to train the model,
which is less important if the model is trained offline. How-
ever, LC applications usually experience inevitable system
interference and/or dynamic resource allocations; both affect
service time and model accuracy. The prediction model only
captures application-level sources of latency variation, and
has to be updated or completely retrained online upon such
model drifts. Models with high training time will be unable
to quickly adapt to such environment changes at runtime
and will result in longstanding QoS violations.

• Inference overhead: Time to get a latency prediction. Since
the model will be triggered for each request, keeping infer-
ence overhead negligible to the request latency is critical.

We start from linear regression, one of the simplest ap-
proaches to model relationship between variables, fitted using
the ordinary least squares (OLS) method which minimizes the
sum of squared residuals [21, 25]. As shown in Table IV,
linear regression achieves pretty high accuracy: R2 is close to
1, and the prediction error (RMSE/QoS) is less than 6%. We
find various advantages of the simple linear regression model:

1) Our characterization study of six diverse applications
shows that the relationship between features and service
time is rather simple. Red solid lines in Figure 5 and 6a
show the request service time prediction for Moses, Sphinx,
and Xapian. The good alignment between each line and the
scatterplot trend shows that the simple linear regression
model clearly captures each application’s service times.

2) Due to its simplicity, linear regression incurs minimal
training and inference overheads. Training takes only 3ms,
making online retraining very affordable. Inference takes
only 5µs, negligible to most LC applications.

3) The process to build a linear regression model is gen-
eralizable across applications. A linear regression model
consists of a number of variables and their coefficients.
Once features are selected through ReTail feature selection,
each feature corresponds to a variable. Coefficients are
automatically calculated through training.

4) Linear regression is easily explainable, which, as opposed
to the ML black-box model, can lend itself to insights for
software optimizations. For instance, Xapian’s service time
increases almost linearly with term frequency. Given this,
we could split a large request in two, each with a smaller
term frequency, to reduce the service time of large requests.

Despite these advantages, more complicated models may
further improve accuracy. Taking Xapian as an example, the
scatterplot in Figure 6a shows a slightly concave trend. We
further investigate Xapian’s request processing and depict
results in Figure 7. Suppose term frequency is t. Then, the
time complexity of query and response preparation are O(1)
each, of document retrieval is O(t), and of document sorting
is O(t ⇥ logt). We attribute the curved scatterplot pattern to
the document sorting time complexity.

We also explore neural networks (NN), known for their
ability to identify almost any underlying relationship between
variables. Linear regression and NN fall at the two ends on
the spectrum: the former being simple but potentially less
accurate, and the latter being complicated but more powerful.
Comparing these models helps us understand the tradeoff
between accuracy and overhead when predicting service times.

NN-based request latency prediction was proposed in very
recent work, Gemini [49]. Gemini’s NN model has 5 hidden
layers and 128 neurons/layer. It uses the ReLU activation
function and MSE (mean-square error) loss function. Table IV
shows the performance of the Gemini’s NN model (shown as
NN-Gemini), using the same input features as linear regres-
sion. We implement NN in PyTorch [43]. We observe some
accuracy improvement for Xapian, visualized in Fig. 6b: NN-
Gemini captures the concave nature between term frequency
and service time. However, the zigzag pattern around term
frequency = 450 indicates that the model is slightly overfitting.
Because Gemini is designed for Apache Lucene Search [1], the
exact NN model proposed cannot be generalized to other LC
applications. We also find negligible accuracy improvement for
Moses and Sphinx, but more than 3000⇥ increase in training
time and more than 60⇥ increase in inference time.

Therefore, we manually tune the NN model for each LC
application to find the configuration with the least overhead
without losing accuracy. We first choose a large epoch at
which accuracy has converged. Then, in the following order,
we tune batch size, the number of hidden layers, the number
of neurons per layer, and the number of epochs to reduce the
training overhead while maintaining accuracy. Table IV shows
the results of our hand-tuned optimized NN model, shown
as NN-Tuned. Sometimes, accuracy even increases because
smaller NN structures reduce the likelihood of overfitting, as
demonstrated by Xapian and Moses. Figure 6c also shows that
the line is smoother under NN-Tuned. Training and inference

6

RETAIL LATENCY PREDICTION

▪ Categorization and Linear regression
• Most relationships are categorical or linear
• Comparison with neural networks

» Small training and inference overhead

14

Motivation• Characterization• ReTail • Evaluation • Conclusions

TABLE IV: Quantitative comparison of three prediction models: linear regression, Gemini’s neural network model (NN-Gemini),
and an optimized NN model (NN-Tuned) which requires careful hand-tuning for each application.

Model Info Overhead Accuracy
#Layer #Neuron/layer #Epoch Batch size Training Inference R2 RMSE RMSE/QoS

Xapian
Linear Regression N.A. 0.003s 5µs 0.959 0.334ms 4.18%

NN-Gemini 5 128 15 32 9.7s 363µs 0.973 0.270ms 3.38%
NN-Tuned 1 16 5 32 0.98s 107µs 0.974 0.264ms 3.30%

Moses
Linear Regression N.A. 0.003s 5µs 0.854 3.622ms 3.02%

NN-Gemini 5 128 500 32 85.1s 514µs 0.833 3.867ms 3.22%
NN-Tuned 1 4 400 1024 0.74s 258µs 0.854 3.617ms 3.01%

Sphinx
Linear Regression N.A. 0.003s 5µs 0.746 217.929ms 5.45%

NN-Gemini 5 128 1000 32 36.15s 344µs 0.747 217.396ms 5.43%
NN-Tuned 3 128 700 32 15.39s 300µs 0.747 217.474ms 5.43%

• Training overhead: The time it takes to train the model,
which is less important if the model is trained offline. How-
ever, LC applications usually experience inevitable system
interference and/or dynamic resource allocations; both affect
service time and model accuracy. The prediction model only
captures application-level sources of latency variation, and
has to be updated or completely retrained online upon such
model drifts. Models with high training time will be unable
to quickly adapt to such environment changes at runtime
and will result in longstanding QoS violations.

• Inference overhead: Time to get a latency prediction. Since
the model will be triggered for each request, keeping infer-
ence overhead negligible to the request latency is critical.

We start from linear regression, one of the simplest ap-
proaches to model relationship between variables, fitted using
the ordinary least squares (OLS) method which minimizes the
sum of squared residuals [21, 25]. As shown in Table IV,
linear regression achieves pretty high accuracy: R2 is close to
1, and the prediction error (RMSE/QoS) is less than 6%. We
find various advantages of the simple linear regression model:

1) Our characterization study of six diverse applications
shows that the relationship between features and service
time is rather simple. Red solid lines in Figure 5 and 6a
show the request service time prediction for Moses, Sphinx,
and Xapian. The good alignment between each line and the
scatterplot trend shows that the simple linear regression
model clearly captures each application’s service times.

2) Due to its simplicity, linear regression incurs minimal
training and inference overheads. Training takes only 3ms,
making online retraining very affordable. Inference takes
only 5µs, negligible to most LC applications.

3) The process to build a linear regression model is gen-
eralizable across applications. A linear regression model
consists of a number of variables and their coefficients.
Once features are selected through ReTail feature selection,
each feature corresponds to a variable. Coefficients are
automatically calculated through training.

4) Linear regression is easily explainable, which, as opposed
to the ML black-box model, can lend itself to insights for
software optimizations. For instance, Xapian’s service time
increases almost linearly with term frequency. Given this,
we could split a large request in two, each with a smaller
term frequency, to reduce the service time of large requests.

Despite these advantages, more complicated models may
further improve accuracy. Taking Xapian as an example, the
scatterplot in Figure 6a shows a slightly concave trend. We
further investigate Xapian’s request processing and depict
results in Figure 7. Suppose term frequency is t. Then, the
time complexity of query and response preparation are O(1)
each, of document retrieval is O(t), and of document sorting
is O(t ⇥ logt). We attribute the curved scatterplot pattern to
the document sorting time complexity.

We also explore neural networks (NN), known for their
ability to identify almost any underlying relationship between
variables. Linear regression and NN fall at the two ends on
the spectrum: the former being simple but potentially less
accurate, and the latter being complicated but more powerful.
Comparing these models helps us understand the tradeoff
between accuracy and overhead when predicting service times.

NN-based request latency prediction was proposed in very
recent work, Gemini [49]. Gemini’s NN model has 5 hidden
layers and 128 neurons/layer. It uses the ReLU activation
function and MSE (mean-square error) loss function. Table IV
shows the performance of the Gemini’s NN model (shown as
NN-Gemini), using the same input features as linear regres-
sion. We implement NN in PyTorch [43]. We observe some
accuracy improvement for Xapian, visualized in Fig. 6b: NN-
Gemini captures the concave nature between term frequency
and service time. However, the zigzag pattern around term
frequency = 450 indicates that the model is slightly overfitting.
Because Gemini is designed for Apache Lucene Search [1], the
exact NN model proposed cannot be generalized to other LC
applications. We also find negligible accuracy improvement for
Moses and Sphinx, but more than 3000⇥ increase in training
time and more than 60⇥ increase in inference time.

Therefore, we manually tune the NN model for each LC
application to find the configuration with the least overhead
without losing accuracy. We first choose a large epoch at
which accuracy has converged. Then, in the following order,
we tune batch size, the number of hidden layers, the number
of neurons per layer, and the number of epochs to reduce the
training overhead while maintaining accuracy. Table IV shows
the results of our hand-tuned optimized NN model, shown
as NN-Tuned. Sometimes, accuracy even increases because
smaller NN structures reduce the likelihood of overfitting, as
demonstrated by Xapian and Moses. Figure 6c also shows that
the line is smoother under NN-Tuned. Training and inference

6

RETAIL LATENCY PREDICTION

▪ Categorization and Linear regression
• Most relationships are categorical or linear
• Comparison with neural networks

» Small training and inference overhead
» Nearly the same accuracy as neural network

14

Motivation• Characterization• ReTail • Evaluation • Conclusions

TABLE IV: Quantitative comparison of three prediction models: linear regression, Gemini’s neural network model (NN-Gemini),
and an optimized NN model (NN-Tuned) which requires careful hand-tuning for each application.

Model Info Overhead Accuracy
#Layer #Neuron/layer #Epoch Batch size Training Inference R2 RMSE RMSE/QoS

Xapian
Linear Regression N.A. 0.003s 5µs 0.959 0.334ms 4.18%

NN-Gemini 5 128 15 32 9.7s 363µs 0.973 0.270ms 3.38%
NN-Tuned 1 16 5 32 0.98s 107µs 0.974 0.264ms 3.30%

Moses
Linear Regression N.A. 0.003s 5µs 0.854 3.622ms 3.02%

NN-Gemini 5 128 500 32 85.1s 514µs 0.833 3.867ms 3.22%
NN-Tuned 1 4 400 1024 0.74s 258µs 0.854 3.617ms 3.01%

Sphinx
Linear Regression N.A. 0.003s 5µs 0.746 217.929ms 5.45%

NN-Gemini 5 128 1000 32 36.15s 344µs 0.747 217.396ms 5.43%
NN-Tuned 3 128 700 32 15.39s 300µs 0.747 217.474ms 5.43%

• Training overhead: The time it takes to train the model,
which is less important if the model is trained offline. How-
ever, LC applications usually experience inevitable system
interference and/or dynamic resource allocations; both affect
service time and model accuracy. The prediction model only
captures application-level sources of latency variation, and
has to be updated or completely retrained online upon such
model drifts. Models with high training time will be unable
to quickly adapt to such environment changes at runtime
and will result in longstanding QoS violations.

• Inference overhead: Time to get a latency prediction. Since
the model will be triggered for each request, keeping infer-
ence overhead negligible to the request latency is critical.

We start from linear regression, one of the simplest ap-
proaches to model relationship between variables, fitted using
the ordinary least squares (OLS) method which minimizes the
sum of squared residuals [21, 25]. As shown in Table IV,
linear regression achieves pretty high accuracy: R2 is close to
1, and the prediction error (RMSE/QoS) is less than 6%. We
find various advantages of the simple linear regression model:

1) Our characterization study of six diverse applications
shows that the relationship between features and service
time is rather simple. Red solid lines in Figure 5 and 6a
show the request service time prediction for Moses, Sphinx,
and Xapian. The good alignment between each line and the
scatterplot trend shows that the simple linear regression
model clearly captures each application’s service times.

2) Due to its simplicity, linear regression incurs minimal
training and inference overheads. Training takes only 3ms,
making online retraining very affordable. Inference takes
only 5µs, negligible to most LC applications.

3) The process to build a linear regression model is gen-
eralizable across applications. A linear regression model
consists of a number of variables and their coefficients.
Once features are selected through ReTail feature selection,
each feature corresponds to a variable. Coefficients are
automatically calculated through training.

4) Linear regression is easily explainable, which, as opposed
to the ML black-box model, can lend itself to insights for
software optimizations. For instance, Xapian’s service time
increases almost linearly with term frequency. Given this,
we could split a large request in two, each with a smaller
term frequency, to reduce the service time of large requests.

Despite these advantages, more complicated models may
further improve accuracy. Taking Xapian as an example, the
scatterplot in Figure 6a shows a slightly concave trend. We
further investigate Xapian’s request processing and depict
results in Figure 7. Suppose term frequency is t. Then, the
time complexity of query and response preparation are O(1)
each, of document retrieval is O(t), and of document sorting
is O(t ⇥ logt). We attribute the curved scatterplot pattern to
the document sorting time complexity.

We also explore neural networks (NN), known for their
ability to identify almost any underlying relationship between
variables. Linear regression and NN fall at the two ends on
the spectrum: the former being simple but potentially less
accurate, and the latter being complicated but more powerful.
Comparing these models helps us understand the tradeoff
between accuracy and overhead when predicting service times.

NN-based request latency prediction was proposed in very
recent work, Gemini [49]. Gemini’s NN model has 5 hidden
layers and 128 neurons/layer. It uses the ReLU activation
function and MSE (mean-square error) loss function. Table IV
shows the performance of the Gemini’s NN model (shown as
NN-Gemini), using the same input features as linear regres-
sion. We implement NN in PyTorch [43]. We observe some
accuracy improvement for Xapian, visualized in Fig. 6b: NN-
Gemini captures the concave nature between term frequency
and service time. However, the zigzag pattern around term
frequency = 450 indicates that the model is slightly overfitting.
Because Gemini is designed for Apache Lucene Search [1], the
exact NN model proposed cannot be generalized to other LC
applications. We also find negligible accuracy improvement for
Moses and Sphinx, but more than 3000⇥ increase in training
time and more than 60⇥ increase in inference time.

Therefore, we manually tune the NN model for each LC
application to find the configuration with the least overhead
without losing accuracy. We first choose a large epoch at
which accuracy has converged. Then, in the following order,
we tune batch size, the number of hidden layers, the number
of neurons per layer, and the number of epochs to reduce the
training overhead while maintaining accuracy. Table IV shows
the results of our hand-tuned optimized NN model, shown
as NN-Tuned. Sometimes, accuracy even increases because
smaller NN structures reduce the likelihood of overfitting, as
demonstrated by Xapian and Moses. Figure 6c also shows that
the line is smoother under NN-Tuned. Training and inference

6

RETAIL LATENCY PREDICTION

▪ Categorization and Linear regression
• Most relationships are categorical or linear
• Comparison with neural networks

» Small training and inference overhead
» Nearly the same accuracy as neural network

• Explainable

14

Motivation• Characterization• ReTail • Evaluation • Conclusions

TABLE IV: Quantitative comparison of three prediction models: linear regression, Gemini’s neural network model (NN-Gemini),
and an optimized NN model (NN-Tuned) which requires careful hand-tuning for each application.

Model Info Overhead Accuracy
#Layer #Neuron/layer #Epoch Batch size Training Inference R2 RMSE RMSE/QoS

Xapian
Linear Regression N.A. 0.003s 5µs 0.959 0.334ms 4.18%

NN-Gemini 5 128 15 32 9.7s 363µs 0.973 0.270ms 3.38%
NN-Tuned 1 16 5 32 0.98s 107µs 0.974 0.264ms 3.30%

Moses
Linear Regression N.A. 0.003s 5µs 0.854 3.622ms 3.02%

NN-Gemini 5 128 500 32 85.1s 514µs 0.833 3.867ms 3.22%
NN-Tuned 1 4 400 1024 0.74s 258µs 0.854 3.617ms 3.01%

Sphinx
Linear Regression N.A. 0.003s 5µs 0.746 217.929ms 5.45%

NN-Gemini 5 128 1000 32 36.15s 344µs 0.747 217.396ms 5.43%
NN-Tuned 3 128 700 32 15.39s 300µs 0.747 217.474ms 5.43%

• Training overhead: The time it takes to train the model,
which is less important if the model is trained offline. How-
ever, LC applications usually experience inevitable system
interference and/or dynamic resource allocations; both affect
service time and model accuracy. The prediction model only
captures application-level sources of latency variation, and
has to be updated or completely retrained online upon such
model drifts. Models with high training time will be unable
to quickly adapt to such environment changes at runtime
and will result in longstanding QoS violations.

• Inference overhead: Time to get a latency prediction. Since
the model will be triggered for each request, keeping infer-
ence overhead negligible to the request latency is critical.

We start from linear regression, one of the simplest ap-
proaches to model relationship between variables, fitted using
the ordinary least squares (OLS) method which minimizes the
sum of squared residuals [21, 25]. As shown in Table IV,
linear regression achieves pretty high accuracy: R2 is close to
1, and the prediction error (RMSE/QoS) is less than 6%. We
find various advantages of the simple linear regression model:

1) Our characterization study of six diverse applications
shows that the relationship between features and service
time is rather simple. Red solid lines in Figure 5 and 6a
show the request service time prediction for Moses, Sphinx,
and Xapian. The good alignment between each line and the
scatterplot trend shows that the simple linear regression
model clearly captures each application’s service times.

2) Due to its simplicity, linear regression incurs minimal
training and inference overheads. Training takes only 3ms,
making online retraining very affordable. Inference takes
only 5µs, negligible to most LC applications.

3) The process to build a linear regression model is gen-
eralizable across applications. A linear regression model
consists of a number of variables and their coefficients.
Once features are selected through ReTail feature selection,
each feature corresponds to a variable. Coefficients are
automatically calculated through training.

4) Linear regression is easily explainable, which, as opposed
to the ML black-box model, can lend itself to insights for
software optimizations. For instance, Xapian’s service time
increases almost linearly with term frequency. Given this,
we could split a large request in two, each with a smaller
term frequency, to reduce the service time of large requests.

Despite these advantages, more complicated models may
further improve accuracy. Taking Xapian as an example, the
scatterplot in Figure 6a shows a slightly concave trend. We
further investigate Xapian’s request processing and depict
results in Figure 7. Suppose term frequency is t. Then, the
time complexity of query and response preparation are O(1)
each, of document retrieval is O(t), and of document sorting
is O(t ⇥ logt). We attribute the curved scatterplot pattern to
the document sorting time complexity.

We also explore neural networks (NN), known for their
ability to identify almost any underlying relationship between
variables. Linear regression and NN fall at the two ends on
the spectrum: the former being simple but potentially less
accurate, and the latter being complicated but more powerful.
Comparing these models helps us understand the tradeoff
between accuracy and overhead when predicting service times.

NN-based request latency prediction was proposed in very
recent work, Gemini [49]. Gemini’s NN model has 5 hidden
layers and 128 neurons/layer. It uses the ReLU activation
function and MSE (mean-square error) loss function. Table IV
shows the performance of the Gemini’s NN model (shown as
NN-Gemini), using the same input features as linear regres-
sion. We implement NN in PyTorch [43]. We observe some
accuracy improvement for Xapian, visualized in Fig. 6b: NN-
Gemini captures the concave nature between term frequency
and service time. However, the zigzag pattern around term
frequency = 450 indicates that the model is slightly overfitting.
Because Gemini is designed for Apache Lucene Search [1], the
exact NN model proposed cannot be generalized to other LC
applications. We also find negligible accuracy improvement for
Moses and Sphinx, but more than 3000⇥ increase in training
time and more than 60⇥ increase in inference time.

Therefore, we manually tune the NN model for each LC
application to find the configuration with the least overhead
without losing accuracy. We first choose a large epoch at
which accuracy has converged. Then, in the following order,
we tune batch size, the number of hidden layers, the number
of neurons per layer, and the number of epochs to reduce the
training overhead while maintaining accuracy. Table IV shows
the results of our hand-tuned optimized NN model, shown
as NN-Tuned. Sometimes, accuracy even increases because
smaller NN structures reduce the likelihood of overfitting, as
demonstrated by Xapian and Moses. Figure 6c also shows that
the line is smoother under NN-Tuned. Training and inference

6

RETAIL POWER MANAGEMENT

▪ Find the minimum frequency to satisfy QoS

15

Motivation• Characterization• ReTail • Evaluation • Conclusions

RETAIL POWER MANAGEMENT

▪ Find the minimum frequency to satisfy QoS

15

Motivation• Characterization• ReTail • Evaluation • Conclusions

RETAIL POWER MANAGEMENT

▪ Find the minimum frequency to satisfy QoS

15

Motivation• Characterization• ReTail • Evaluation • Conclusions

MORE IN THE PAPER

▪ReTail feature selection
• Timeliness of all the selected features
• Correlation degree of multiple features

▪ReTail latency prediction
• Training datasets
• Model retraining for model drift

▪ReTail power management
• Prediction based on all queued and newly joined requests
• Feedback-control loop with latency monitoring

16

Motivation• Characterization• ReTail • Evaluation • Conclusions

EVALUATION - METHODOLOGY

▪ Server: Intel Xeon Gold 6152 CPU @ 2.1GHz
• Power manager: one reserved core in socket 0
• LC app: socket 0
• Clients: socket 1

▪ Power measurement: CPU Energy Meter
• Measures energy consumption of socket 0
• Divides the execution time of the LC app

▪ ACPI-Freq: 1~2.1GHz in 0.1GHz steps
▪ Baselines:

• Rubik [MICRO’15]: statistical model
• Gemini [MICRO’20]: NN-based, only considers request features

17

Motivation• Characterization• ReTail • Evaluation • Conclusions

Rubik Gemini ReTail Rubik Gemini ReTail

200 400 600 800 1000
RPS (k)

20

40

60

80

100

120

Po
w

er
(W

)

Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(a) Power consumption under each power manager at various input loads.

200 400 600 800 1000
RPS (k)

0
5

10
15

D
ro

pp
ed

(%
) Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(b) Percentage of dropped requests under each power manager at various input load.

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
te

nc
y

(m
s)

Masstree

Mean Tail0
1
2
3
4
5
6 ImgDNN

Mean Tail0
1000
2000
3000
4000
5000 Sphinx

Mean Tail0
2
4
6
8

10 Xapian

Mean Tail0
20
40
60
80

100
120
140 Moses

Mean Tail0
1
2
3
4
5
6 Shore

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2 Silo

(c) Mean and tail latency under each power manager at max load. The horizontal dotted lines are the QoS targets.
Fig. 11: Comparison between Rubik, Gemini, and ReTail.

latency monitor to adjust the internal request latency target, to
combat prediction errors.

2) Gemini’s feature space include only features that are
readily available at request arrival. For applications that require
applications features, such as Xapian, Gemini consumes even
more power than Rubik. ReTail opens up the feature space to
include features that are not necessarily available at request
arrival, resulting in features that correlate better with request
service time for Xapian and Shore, which eventually leads
to much lower prediction errors (RMSE) than Gemini. The
difference between Gemini and ReTail is smaller for Shore
because only two request types in Shore require features, so
Gemini is still beneficial for the other two request types. Like
Shore, two of Silo’s request types also require application
features, but the difference between the three power managers
for Silo is even smaller. This is because Silo’s request latency
is in the sub-millisecond granularity, and the overhead to adjust
frequency (100s of microseconds) is non-negligible compared
to request latency (Section VII-F), which makes per-request
frequency adjustment less effective.

3) Gemini’s high inference overheads (more than 300µs per
request as shown in Table III) are significant in applications
with sub-millisecond request latencies (i.e., Masstree and
Silo). For Masstree, Gemini consumes more power than Rubik
due to the additional inference overhead.

In short, ReTail reduces power consumption by up to 36.2%
and 35.6% (average 11.5% and 8.9%) compared with Rubik
and Gemini, respectively, without dropping any requests.

C. QoS Awareness

QoS is always ReTail’s first priority; power is saved only
under QoS satisfaction. The latency monitor (Section VI-C) is
especially designed to adjust the internal request latency target
to meet the overall application’s QoS target even under high
load, or with prediction errors, and/or upon model drift.

As shown in Fig. 11c, even under high load, ReTail still
meets QoS. Compared with Rubik, ReTail has higher mean
latency due to more accurate identification of short requests,
which are slowed down. Rubik also always meets QoS due to
the conservative latency prediction and frequency adjustments.
However, Gemini violates QoS for Xapian, Shore and Silo
(i.e., those that need application features) due to prediction
errors, and for Masstree and Silo due to long inference time.
In addition, Gemini simply sets the request latency target
to the application’s QoS target, i.e., QoS0 = QoS. This is
especially problematic for high load, when frequency has to
be proactively boosted to avoid queues getting quickly filled up
in the future. Gemini is also oblivious to how QoS is defined,
i.e., the power manager will perform exactly the same when
tail latency is defined based on the 90th or 99th percentile.

D. ReTail Decomposition

To understand the effectiveness of each of the three com-
ponents in ReTail, i.e., ReTail’s feature selection, latency
prediction and power management, we decompose ReTail and
compare with mechanisms that differ in one or more of the
components. Specifically, for feature selection, as shown in
Fig. 12, dotted lines use only request features for feature
selection (adopted by Adrenaline and Gemini), and solid lines
use both request and application features (adopted by ReTail).
For each feature space, we adopt five different combinations
of prediction and power management algorithms, including
Adrenaline: classification-based prediction and power man-
agement; Gemini/Gemini-LR: NN/LR-based prediction and
Gemini’s two-step DVFS; ReTail-NN/ReTail: NN/LR-based
prediction and ReTail’s power management algorithm. Fig. 12
shows power consumption that is measured when each ap-
plication runs at medium high load (i.e., 70% of max load),
normalized to the power consumption under ReTail with both
request and application features as feature space.

10

EVALUATION

18

Motivation• Characterization• ReTail • Evaluation • Conclusions

Rubik Gemini ReTail Rubik Gemini ReTail

200 400 600 800 1000
RPS (k)

20

40

60

80

100

120

Po
w

er
(W

)

Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(a) Power consumption under each power manager at various input loads.

200 400 600 800 1000
RPS (k)

0
5

10
15

D
ro

pp
ed

(%
) Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(b) Percentage of dropped requests under each power manager at various input load.

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
te

nc
y

(m
s)

Masstree

Mean Tail0
1
2
3
4
5
6 ImgDNN

Mean Tail0
1000
2000
3000
4000
5000 Sphinx

Mean Tail0
2
4
6
8

10 Xapian

Mean Tail0
20
40
60
80

100
120
140 Moses

Mean Tail0
1
2
3
4
5
6 Shore

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2 Silo

(c) Mean and tail latency under each power manager at max load. The horizontal dotted lines are the QoS targets.
Fig. 11: Comparison between Rubik, Gemini, and ReTail.

latency monitor to adjust the internal request latency target, to
combat prediction errors.

2) Gemini’s feature space include only features that are
readily available at request arrival. For applications that require
applications features, such as Xapian, Gemini consumes even
more power than Rubik. ReTail opens up the feature space to
include features that are not necessarily available at request
arrival, resulting in features that correlate better with request
service time for Xapian and Shore, which eventually leads
to much lower prediction errors (RMSE) than Gemini. The
difference between Gemini and ReTail is smaller for Shore
because only two request types in Shore require features, so
Gemini is still beneficial for the other two request types. Like
Shore, two of Silo’s request types also require application
features, but the difference between the three power managers
for Silo is even smaller. This is because Silo’s request latency
is in the sub-millisecond granularity, and the overhead to adjust
frequency (100s of microseconds) is non-negligible compared
to request latency (Section VII-F), which makes per-request
frequency adjustment less effective.

3) Gemini’s high inference overheads (more than 300µs per
request as shown in Table III) are significant in applications
with sub-millisecond request latencies (i.e., Masstree and
Silo). For Masstree, Gemini consumes more power than Rubik
due to the additional inference overhead.

In short, ReTail reduces power consumption by up to 36.2%
and 35.6% (average 11.5% and 8.9%) compared with Rubik
and Gemini, respectively, without dropping any requests.

C. QoS Awareness

QoS is always ReTail’s first priority; power is saved only
under QoS satisfaction. The latency monitor (Section VI-C) is
especially designed to adjust the internal request latency target
to meet the overall application’s QoS target even under high
load, or with prediction errors, and/or upon model drift.

As shown in Fig. 11c, even under high load, ReTail still
meets QoS. Compared with Rubik, ReTail has higher mean
latency due to more accurate identification of short requests,
which are slowed down. Rubik also always meets QoS due to
the conservative latency prediction and frequency adjustments.
However, Gemini violates QoS for Xapian, Shore and Silo
(i.e., those that need application features) due to prediction
errors, and for Masstree and Silo due to long inference time.
In addition, Gemini simply sets the request latency target
to the application’s QoS target, i.e., QoS0 = QoS. This is
especially problematic for high load, when frequency has to
be proactively boosted to avoid queues getting quickly filled up
in the future. Gemini is also oblivious to how QoS is defined,
i.e., the power manager will perform exactly the same when
tail latency is defined based on the 90th or 99th percentile.

D. ReTail Decomposition

To understand the effectiveness of each of the three com-
ponents in ReTail, i.e., ReTail’s feature selection, latency
prediction and power management, we decompose ReTail and
compare with mechanisms that differ in one or more of the
components. Specifically, for feature selection, as shown in
Fig. 12, dotted lines use only request features for feature
selection (adopted by Adrenaline and Gemini), and solid lines
use both request and application features (adopted by ReTail).
For each feature space, we adopt five different combinations
of prediction and power management algorithms, including
Adrenaline: classification-based prediction and power man-
agement; Gemini/Gemini-LR: NN/LR-based prediction and
Gemini’s two-step DVFS; ReTail-NN/ReTail: NN/LR-based
prediction and ReTail’s power management algorithm. Fig. 12
shows power consumption that is measured when each ap-
plication runs at medium high load (i.e., 70% of max load),
normalized to the power consumption under ReTail with both
request and application features as feature space.

10

EVALUATION

18

Motivation• Characterization• ReTail • Evaluation • Conclusions

Rubik Gemini ReTail Rubik Gemini ReTail

200 400 600 800 1000
RPS (k)

20

40

60

80

100

120

Po
w

er
(W

)

Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(a) Power consumption under each power manager at various input loads.

200 400 600 800 1000
RPS (k)

0
5

10
15

D
ro

pp
ed

(%
) Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(b) Percentage of dropped requests under each power manager at various input load.

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
te

nc
y

(m
s)

Masstree

Mean Tail0
1
2
3
4
5
6 ImgDNN

Mean Tail0
1000
2000
3000
4000
5000 Sphinx

Mean Tail0
2
4
6
8

10 Xapian

Mean Tail0
20
40
60
80

100
120
140 Moses

Mean Tail0
1
2
3
4
5
6 Shore

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2 Silo

(c) Mean and tail latency under each power manager at max load. The horizontal dotted lines are the QoS targets.
Fig. 11: Comparison between Rubik, Gemini, and ReTail.

latency monitor to adjust the internal request latency target, to
combat prediction errors.

2) Gemini’s feature space include only features that are
readily available at request arrival. For applications that require
applications features, such as Xapian, Gemini consumes even
more power than Rubik. ReTail opens up the feature space to
include features that are not necessarily available at request
arrival, resulting in features that correlate better with request
service time for Xapian and Shore, which eventually leads
to much lower prediction errors (RMSE) than Gemini. The
difference between Gemini and ReTail is smaller for Shore
because only two request types in Shore require features, so
Gemini is still beneficial for the other two request types. Like
Shore, two of Silo’s request types also require application
features, but the difference between the three power managers
for Silo is even smaller. This is because Silo’s request latency
is in the sub-millisecond granularity, and the overhead to adjust
frequency (100s of microseconds) is non-negligible compared
to request latency (Section VII-F), which makes per-request
frequency adjustment less effective.

3) Gemini’s high inference overheads (more than 300µs per
request as shown in Table III) are significant in applications
with sub-millisecond request latencies (i.e., Masstree and
Silo). For Masstree, Gemini consumes more power than Rubik
due to the additional inference overhead.

In short, ReTail reduces power consumption by up to 36.2%
and 35.6% (average 11.5% and 8.9%) compared with Rubik
and Gemini, respectively, without dropping any requests.

C. QoS Awareness

QoS is always ReTail’s first priority; power is saved only
under QoS satisfaction. The latency monitor (Section VI-C) is
especially designed to adjust the internal request latency target
to meet the overall application’s QoS target even under high
load, or with prediction errors, and/or upon model drift.

As shown in Fig. 11c, even under high load, ReTail still
meets QoS. Compared with Rubik, ReTail has higher mean
latency due to more accurate identification of short requests,
which are slowed down. Rubik also always meets QoS due to
the conservative latency prediction and frequency adjustments.
However, Gemini violates QoS for Xapian, Shore and Silo
(i.e., those that need application features) due to prediction
errors, and for Masstree and Silo due to long inference time.
In addition, Gemini simply sets the request latency target
to the application’s QoS target, i.e., QoS0 = QoS. This is
especially problematic for high load, when frequency has to
be proactively boosted to avoid queues getting quickly filled up
in the future. Gemini is also oblivious to how QoS is defined,
i.e., the power manager will perform exactly the same when
tail latency is defined based on the 90th or 99th percentile.

D. ReTail Decomposition

To understand the effectiveness of each of the three com-
ponents in ReTail, i.e., ReTail’s feature selection, latency
prediction and power management, we decompose ReTail and
compare with mechanisms that differ in one or more of the
components. Specifically, for feature selection, as shown in
Fig. 12, dotted lines use only request features for feature
selection (adopted by Adrenaline and Gemini), and solid lines
use both request and application features (adopted by ReTail).
For each feature space, we adopt five different combinations
of prediction and power management algorithms, including
Adrenaline: classification-based prediction and power man-
agement; Gemini/Gemini-LR: NN/LR-based prediction and
Gemini’s two-step DVFS; ReTail-NN/ReTail: NN/LR-based
prediction and ReTail’s power management algorithm. Fig. 12
shows power consumption that is measured when each ap-
plication runs at medium high load (i.e., 70% of max load),
normalized to the power consumption under ReTail with both
request and application features as feature space.

10

EVALUATION

18

Motivation• Characterization• ReTail • Evaluation • Conclusions

Rubik Gemini ReTail Rubik Gemini ReTail

200 400 600 800 1000
RPS (k)

20

40

60

80

100

120

Po
w

er
(W

)

Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(a) Power consumption under each power manager at various input loads.

200 400 600 800 1000
RPS (k)

0
5

10
15

D
ro

pp
ed

(%
) Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(b) Percentage of dropped requests under each power manager at various input load.

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
te

nc
y

(m
s)

Masstree

Mean Tail0
1
2
3
4
5
6 ImgDNN

Mean Tail0
1000
2000
3000
4000
5000 Sphinx

Mean Tail0
2
4
6
8

10 Xapian

Mean Tail0
20
40
60
80

100
120
140 Moses

Mean Tail0
1
2
3
4
5
6 Shore

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2 Silo

(c) Mean and tail latency under each power manager at max load. The horizontal dotted lines are the QoS targets.
Fig. 11: Comparison between Rubik, Gemini, and ReTail.

latency monitor to adjust the internal request latency target, to
combat prediction errors.

2) Gemini’s feature space include only features that are
readily available at request arrival. For applications that require
applications features, such as Xapian, Gemini consumes even
more power than Rubik. ReTail opens up the feature space to
include features that are not necessarily available at request
arrival, resulting in features that correlate better with request
service time for Xapian and Shore, which eventually leads
to much lower prediction errors (RMSE) than Gemini. The
difference between Gemini and ReTail is smaller for Shore
because only two request types in Shore require features, so
Gemini is still beneficial for the other two request types. Like
Shore, two of Silo’s request types also require application
features, but the difference between the three power managers
for Silo is even smaller. This is because Silo’s request latency
is in the sub-millisecond granularity, and the overhead to adjust
frequency (100s of microseconds) is non-negligible compared
to request latency (Section VII-F), which makes per-request
frequency adjustment less effective.

3) Gemini’s high inference overheads (more than 300µs per
request as shown in Table III) are significant in applications
with sub-millisecond request latencies (i.e., Masstree and
Silo). For Masstree, Gemini consumes more power than Rubik
due to the additional inference overhead.

In short, ReTail reduces power consumption by up to 36.2%
and 35.6% (average 11.5% and 8.9%) compared with Rubik
and Gemini, respectively, without dropping any requests.

C. QoS Awareness

QoS is always ReTail’s first priority; power is saved only
under QoS satisfaction. The latency monitor (Section VI-C) is
especially designed to adjust the internal request latency target
to meet the overall application’s QoS target even under high
load, or with prediction errors, and/or upon model drift.

As shown in Fig. 11c, even under high load, ReTail still
meets QoS. Compared with Rubik, ReTail has higher mean
latency due to more accurate identification of short requests,
which are slowed down. Rubik also always meets QoS due to
the conservative latency prediction and frequency adjustments.
However, Gemini violates QoS for Xapian, Shore and Silo
(i.e., those that need application features) due to prediction
errors, and for Masstree and Silo due to long inference time.
In addition, Gemini simply sets the request latency target
to the application’s QoS target, i.e., QoS0 = QoS. This is
especially problematic for high load, when frequency has to
be proactively boosted to avoid queues getting quickly filled up
in the future. Gemini is also oblivious to how QoS is defined,
i.e., the power manager will perform exactly the same when
tail latency is defined based on the 90th or 99th percentile.

D. ReTail Decomposition

To understand the effectiveness of each of the three com-
ponents in ReTail, i.e., ReTail’s feature selection, latency
prediction and power management, we decompose ReTail and
compare with mechanisms that differ in one or more of the
components. Specifically, for feature selection, as shown in
Fig. 12, dotted lines use only request features for feature
selection (adopted by Adrenaline and Gemini), and solid lines
use both request and application features (adopted by ReTail).
For each feature space, we adopt five different combinations
of prediction and power management algorithms, including
Adrenaline: classification-based prediction and power man-
agement; Gemini/Gemini-LR: NN/LR-based prediction and
Gemini’s two-step DVFS; ReTail-NN/ReTail: NN/LR-based
prediction and ReTail’s power management algorithm. Fig. 12
shows power consumption that is measured when each ap-
plication runs at medium high load (i.e., 70% of max load),
normalized to the power consumption under ReTail with both
request and application features as feature space.

10

EVALUATION

18

▪ 12% and 9% power saving compared to Rubik and Gemini, respectively

Motivation• Characterization• ReTail • Evaluation • Conclusions

Rubik Gemini ReTail Rubik Gemini ReTail

200 400 600 800 1000
RPS (k)

20

40

60

80

100

120

Po
w

er
(W

)

Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(a) Power consumption under each power manager at various input loads.

200 400 600 800 1000
RPS (k)

0
5

10
15

D
ro

pp
ed

(%
) Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(b) Percentage of dropped requests under each power manager at various input load.

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
te

nc
y

(m
s)

Masstree

Mean Tail0
1
2
3
4
5
6 ImgDNN

Mean Tail0
1000
2000
3000
4000
5000 Sphinx

Mean Tail0
2
4
6
8

10 Xapian

Mean Tail0
20
40
60
80

100
120
140 Moses

Mean Tail0
1
2
3
4
5
6 Shore

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2 Silo

(c) Mean and tail latency under each power manager at max load. The horizontal dotted lines are the QoS targets.
Fig. 11: Comparison between Rubik, Gemini, and ReTail.

latency monitor to adjust the internal request latency target, to
combat prediction errors.

2) Gemini’s feature space include only features that are
readily available at request arrival. For applications that require
applications features, such as Xapian, Gemini consumes even
more power than Rubik. ReTail opens up the feature space to
include features that are not necessarily available at request
arrival, resulting in features that correlate better with request
service time for Xapian and Shore, which eventually leads
to much lower prediction errors (RMSE) than Gemini. The
difference between Gemini and ReTail is smaller for Shore
because only two request types in Shore require features, so
Gemini is still beneficial for the other two request types. Like
Shore, two of Silo’s request types also require application
features, but the difference between the three power managers
for Silo is even smaller. This is because Silo’s request latency
is in the sub-millisecond granularity, and the overhead to adjust
frequency (100s of microseconds) is non-negligible compared
to request latency (Section VII-F), which makes per-request
frequency adjustment less effective.

3) Gemini’s high inference overheads (more than 300µs per
request as shown in Table III) are significant in applications
with sub-millisecond request latencies (i.e., Masstree and
Silo). For Masstree, Gemini consumes more power than Rubik
due to the additional inference overhead.

In short, ReTail reduces power consumption by up to 36.2%
and 35.6% (average 11.5% and 8.9%) compared with Rubik
and Gemini, respectively, without dropping any requests.

C. QoS Awareness

QoS is always ReTail’s first priority; power is saved only
under QoS satisfaction. The latency monitor (Section VI-C) is
especially designed to adjust the internal request latency target
to meet the overall application’s QoS target even under high
load, or with prediction errors, and/or upon model drift.

As shown in Fig. 11c, even under high load, ReTail still
meets QoS. Compared with Rubik, ReTail has higher mean
latency due to more accurate identification of short requests,
which are slowed down. Rubik also always meets QoS due to
the conservative latency prediction and frequency adjustments.
However, Gemini violates QoS for Xapian, Shore and Silo
(i.e., those that need application features) due to prediction
errors, and for Masstree and Silo due to long inference time.
In addition, Gemini simply sets the request latency target
to the application’s QoS target, i.e., QoS0 = QoS. This is
especially problematic for high load, when frequency has to
be proactively boosted to avoid queues getting quickly filled up
in the future. Gemini is also oblivious to how QoS is defined,
i.e., the power manager will perform exactly the same when
tail latency is defined based on the 90th or 99th percentile.

D. ReTail Decomposition

To understand the effectiveness of each of the three com-
ponents in ReTail, i.e., ReTail’s feature selection, latency
prediction and power management, we decompose ReTail and
compare with mechanisms that differ in one or more of the
components. Specifically, for feature selection, as shown in
Fig. 12, dotted lines use only request features for feature
selection (adopted by Adrenaline and Gemini), and solid lines
use both request and application features (adopted by ReTail).
For each feature space, we adopt five different combinations
of prediction and power management algorithms, including
Adrenaline: classification-based prediction and power man-
agement; Gemini/Gemini-LR: NN/LR-based prediction and
Gemini’s two-step DVFS; ReTail-NN/ReTail: NN/LR-based
prediction and ReTail’s power management algorithm. Fig. 12
shows power consumption that is measured when each ap-
plication runs at medium high load (i.e., 70% of max load),
normalized to the power consumption under ReTail with both
request and application features as feature space.

10

EVALUATION

18

▪ 12% and 9% power saving compared to Rubik and Gemini, respectively

Motivation• Characterization• ReTail • Evaluation • Conclusions

Rubik Gemini ReTail Rubik Gemini ReTail

200 400 600 800 1000
RPS (k)

20

40

60

80

100

120

Po
w

er
(W

)

Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(a) Power consumption under each power manager at various input loads.

200 400 600 800 1000
RPS (k)

0
5

10
15

D
ro

pp
ed

(%
) Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(b) Percentage of dropped requests under each power manager at various input load.

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
te

nc
y

(m
s)

Masstree

Mean Tail0
1
2
3
4
5
6 ImgDNN

Mean Tail0
1000
2000
3000
4000
5000 Sphinx

Mean Tail0
2
4
6
8

10 Xapian

Mean Tail0
20
40
60
80

100
120
140 Moses

Mean Tail0
1
2
3
4
5
6 Shore

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2 Silo

(c) Mean and tail latency under each power manager at max load. The horizontal dotted lines are the QoS targets.
Fig. 11: Comparison between Rubik, Gemini, and ReTail.

latency monitor to adjust the internal request latency target, to
combat prediction errors.

2) Gemini’s feature space include only features that are
readily available at request arrival. For applications that require
applications features, such as Xapian, Gemini consumes even
more power than Rubik. ReTail opens up the feature space to
include features that are not necessarily available at request
arrival, resulting in features that correlate better with request
service time for Xapian and Shore, which eventually leads
to much lower prediction errors (RMSE) than Gemini. The
difference between Gemini and ReTail is smaller for Shore
because only two request types in Shore require features, so
Gemini is still beneficial for the other two request types. Like
Shore, two of Silo’s request types also require application
features, but the difference between the three power managers
for Silo is even smaller. This is because Silo’s request latency
is in the sub-millisecond granularity, and the overhead to adjust
frequency (100s of microseconds) is non-negligible compared
to request latency (Section VII-F), which makes per-request
frequency adjustment less effective.

3) Gemini’s high inference overheads (more than 300µs per
request as shown in Table III) are significant in applications
with sub-millisecond request latencies (i.e., Masstree and
Silo). For Masstree, Gemini consumes more power than Rubik
due to the additional inference overhead.

In short, ReTail reduces power consumption by up to 36.2%
and 35.6% (average 11.5% and 8.9%) compared with Rubik
and Gemini, respectively, without dropping any requests.

C. QoS Awareness

QoS is always ReTail’s first priority; power is saved only
under QoS satisfaction. The latency monitor (Section VI-C) is
especially designed to adjust the internal request latency target
to meet the overall application’s QoS target even under high
load, or with prediction errors, and/or upon model drift.

As shown in Fig. 11c, even under high load, ReTail still
meets QoS. Compared with Rubik, ReTail has higher mean
latency due to more accurate identification of short requests,
which are slowed down. Rubik also always meets QoS due to
the conservative latency prediction and frequency adjustments.
However, Gemini violates QoS for Xapian, Shore and Silo
(i.e., those that need application features) due to prediction
errors, and for Masstree and Silo due to long inference time.
In addition, Gemini simply sets the request latency target
to the application’s QoS target, i.e., QoS0 = QoS. This is
especially problematic for high load, when frequency has to
be proactively boosted to avoid queues getting quickly filled up
in the future. Gemini is also oblivious to how QoS is defined,
i.e., the power manager will perform exactly the same when
tail latency is defined based on the 90th or 99th percentile.

D. ReTail Decomposition

To understand the effectiveness of each of the three com-
ponents in ReTail, i.e., ReTail’s feature selection, latency
prediction and power management, we decompose ReTail and
compare with mechanisms that differ in one or more of the
components. Specifically, for feature selection, as shown in
Fig. 12, dotted lines use only request features for feature
selection (adopted by Adrenaline and Gemini), and solid lines
use both request and application features (adopted by ReTail).
For each feature space, we adopt five different combinations
of prediction and power management algorithms, including
Adrenaline: classification-based prediction and power man-
agement; Gemini/Gemini-LR: NN/LR-based prediction and
Gemini’s two-step DVFS; ReTail-NN/ReTail: NN/LR-based
prediction and ReTail’s power management algorithm. Fig. 12
shows power consumption that is measured when each ap-
plication runs at medium high load (i.e., 70% of max load),
normalized to the power consumption under ReTail with both
request and application features as feature space.

10

EVALUATION

18

▪ 12% and 9% power saving compared to Rubik and Gemini, respectively

▪ No dropping of any requests

Motivation• Characterization• ReTail • Evaluation • Conclusions

Rubik Gemini ReTail Rubik Gemini ReTail

200 400 600 800 1000
RPS (k)

20

40

60

80

100

120

Po
w

er
(W

)

Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(a) Power consumption under each power manager at various input loads.

200 400 600 800 1000
RPS (k)

0
5

10
15

D
ro

pp
ed

(%
) Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(b) Percentage of dropped requests under each power manager at various input load.

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
te

nc
y

(m
s)

Masstree

Mean Tail0
1
2
3
4
5
6 ImgDNN

Mean Tail0
1000
2000
3000
4000
5000 Sphinx

Mean Tail0
2
4
6
8

10 Xapian

Mean Tail0
20
40
60
80

100
120
140 Moses

Mean Tail0
1
2
3
4
5
6 Shore

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2 Silo

(c) Mean and tail latency under each power manager at max load. The horizontal dotted lines are the QoS targets.
Fig. 11: Comparison between Rubik, Gemini, and ReTail.

latency monitor to adjust the internal request latency target, to
combat prediction errors.

2) Gemini’s feature space include only features that are
readily available at request arrival. For applications that require
applications features, such as Xapian, Gemini consumes even
more power than Rubik. ReTail opens up the feature space to
include features that are not necessarily available at request
arrival, resulting in features that correlate better with request
service time for Xapian and Shore, which eventually leads
to much lower prediction errors (RMSE) than Gemini. The
difference between Gemini and ReTail is smaller for Shore
because only two request types in Shore require features, so
Gemini is still beneficial for the other two request types. Like
Shore, two of Silo’s request types also require application
features, but the difference between the three power managers
for Silo is even smaller. This is because Silo’s request latency
is in the sub-millisecond granularity, and the overhead to adjust
frequency (100s of microseconds) is non-negligible compared
to request latency (Section VII-F), which makes per-request
frequency adjustment less effective.

3) Gemini’s high inference overheads (more than 300µs per
request as shown in Table III) are significant in applications
with sub-millisecond request latencies (i.e., Masstree and
Silo). For Masstree, Gemini consumes more power than Rubik
due to the additional inference overhead.

In short, ReTail reduces power consumption by up to 36.2%
and 35.6% (average 11.5% and 8.9%) compared with Rubik
and Gemini, respectively, without dropping any requests.

C. QoS Awareness

QoS is always ReTail’s first priority; power is saved only
under QoS satisfaction. The latency monitor (Section VI-C) is
especially designed to adjust the internal request latency target
to meet the overall application’s QoS target even under high
load, or with prediction errors, and/or upon model drift.

As shown in Fig. 11c, even under high load, ReTail still
meets QoS. Compared with Rubik, ReTail has higher mean
latency due to more accurate identification of short requests,
which are slowed down. Rubik also always meets QoS due to
the conservative latency prediction and frequency adjustments.
However, Gemini violates QoS for Xapian, Shore and Silo
(i.e., those that need application features) due to prediction
errors, and for Masstree and Silo due to long inference time.
In addition, Gemini simply sets the request latency target
to the application’s QoS target, i.e., QoS0 = QoS. This is
especially problematic for high load, when frequency has to
be proactively boosted to avoid queues getting quickly filled up
in the future. Gemini is also oblivious to how QoS is defined,
i.e., the power manager will perform exactly the same when
tail latency is defined based on the 90th or 99th percentile.

D. ReTail Decomposition

To understand the effectiveness of each of the three com-
ponents in ReTail, i.e., ReTail’s feature selection, latency
prediction and power management, we decompose ReTail and
compare with mechanisms that differ in one or more of the
components. Specifically, for feature selection, as shown in
Fig. 12, dotted lines use only request features for feature
selection (adopted by Adrenaline and Gemini), and solid lines
use both request and application features (adopted by ReTail).
For each feature space, we adopt five different combinations
of prediction and power management algorithms, including
Adrenaline: classification-based prediction and power man-
agement; Gemini/Gemini-LR: NN/LR-based prediction and
Gemini’s two-step DVFS; ReTail-NN/ReTail: NN/LR-based
prediction and ReTail’s power management algorithm. Fig. 12
shows power consumption that is measured when each ap-
plication runs at medium high load (i.e., 70% of max load),
normalized to the power consumption under ReTail with both
request and application features as feature space.

10

EVALUATION

18

▪ 12% and 9% power saving compared to Rubik and Gemini, respectively

▪ No dropping of any requests

Motivation• Characterization• ReTail • Evaluation • Conclusions

Rubik Gemini ReTail Rubik Gemini ReTail

200 400 600 800 1000
RPS (k)

20

40

60

80

100

120

Po
w

er
(W

)

Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(a) Power consumption under each power manager at various input loads.

200 400 600 800 1000
RPS (k)

0
5

10
15

D
ro

pp
ed

(%
) Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(b) Percentage of dropped requests under each power manager at various input load.

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
te

nc
y

(m
s)

Masstree

Mean Tail0
1
2
3
4
5
6 ImgDNN

Mean Tail0
1000
2000
3000
4000
5000 Sphinx

Mean Tail0
2
4
6
8

10 Xapian

Mean Tail0
20
40
60
80

100
120
140 Moses

Mean Tail0
1
2
3
4
5
6 Shore

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2 Silo

(c) Mean and tail latency under each power manager at max load. The horizontal dotted lines are the QoS targets.
Fig. 11: Comparison between Rubik, Gemini, and ReTail.

latency monitor to adjust the internal request latency target, to
combat prediction errors.

2) Gemini’s feature space include only features that are
readily available at request arrival. For applications that require
applications features, such as Xapian, Gemini consumes even
more power than Rubik. ReTail opens up the feature space to
include features that are not necessarily available at request
arrival, resulting in features that correlate better with request
service time for Xapian and Shore, which eventually leads
to much lower prediction errors (RMSE) than Gemini. The
difference between Gemini and ReTail is smaller for Shore
because only two request types in Shore require features, so
Gemini is still beneficial for the other two request types. Like
Shore, two of Silo’s request types also require application
features, but the difference between the three power managers
for Silo is even smaller. This is because Silo’s request latency
is in the sub-millisecond granularity, and the overhead to adjust
frequency (100s of microseconds) is non-negligible compared
to request latency (Section VII-F), which makes per-request
frequency adjustment less effective.

3) Gemini’s high inference overheads (more than 300µs per
request as shown in Table III) are significant in applications
with sub-millisecond request latencies (i.e., Masstree and
Silo). For Masstree, Gemini consumes more power than Rubik
due to the additional inference overhead.

In short, ReTail reduces power consumption by up to 36.2%
and 35.6% (average 11.5% and 8.9%) compared with Rubik
and Gemini, respectively, without dropping any requests.

C. QoS Awareness

QoS is always ReTail’s first priority; power is saved only
under QoS satisfaction. The latency monitor (Section VI-C) is
especially designed to adjust the internal request latency target
to meet the overall application’s QoS target even under high
load, or with prediction errors, and/or upon model drift.

As shown in Fig. 11c, even under high load, ReTail still
meets QoS. Compared with Rubik, ReTail has higher mean
latency due to more accurate identification of short requests,
which are slowed down. Rubik also always meets QoS due to
the conservative latency prediction and frequency adjustments.
However, Gemini violates QoS for Xapian, Shore and Silo
(i.e., those that need application features) due to prediction
errors, and for Masstree and Silo due to long inference time.
In addition, Gemini simply sets the request latency target
to the application’s QoS target, i.e., QoS0 = QoS. This is
especially problematic for high load, when frequency has to
be proactively boosted to avoid queues getting quickly filled up
in the future. Gemini is also oblivious to how QoS is defined,
i.e., the power manager will perform exactly the same when
tail latency is defined based on the 90th or 99th percentile.

D. ReTail Decomposition

To understand the effectiveness of each of the three com-
ponents in ReTail, i.e., ReTail’s feature selection, latency
prediction and power management, we decompose ReTail and
compare with mechanisms that differ in one or more of the
components. Specifically, for feature selection, as shown in
Fig. 12, dotted lines use only request features for feature
selection (adopted by Adrenaline and Gemini), and solid lines
use both request and application features (adopted by ReTail).
For each feature space, we adopt five different combinations
of prediction and power management algorithms, including
Adrenaline: classification-based prediction and power man-
agement; Gemini/Gemini-LR: NN/LR-based prediction and
Gemini’s two-step DVFS; ReTail-NN/ReTail: NN/LR-based
prediction and ReTail’s power management algorithm. Fig. 12
shows power consumption that is measured when each ap-
plication runs at medium high load (i.e., 70% of max load),
normalized to the power consumption under ReTail with both
request and application features as feature space.

10

EVALUATION

18

▪ 12% and 9% power saving compared to Rubik and Gemini, respectively

▪ No dropping of any requests ▪ Meet QoS

Motivation• Characterization• ReTail • Evaluation • Conclusions

EVALUATION - RMSE

▪ ReTail has the lowest Root-Mean-Square-Error (RMSE)
▪ ReTail outperforms Gemini’s more sophisticated NN model because

• NN’s high inference overhead delays frequency adjustments
• Gemini only considers request features, while ReTail also considers

application features

19

Motivation• Characterization• ReTail • Evaluation • Conclusions

As a safeguard for both cases, latency monitor in ReTail
constantly monitors tail latency and adjusts the internal request
latency target (QoS0), used in Algorithm 1. QoS0 is initially
set to the application’s QoS target (QoS). Similar to prior
work [13, 29, 35], by monitoring tail latency every 100ms,
we compare the measured (m) and target (t) tail latency, and
adjust QoS0 as follows. If m < 0.9t (this threshold can be
adjusted based on the variation degree in tail latency) or m >
t, we increase or decrease QoS0 by 5% at a time. In the worst
case of sudden load spikes, QoS0 can be reduced from 100% to
0% of QoS in 2s thanks to the fine-grained monitoring every
100ms, running all the requests at the maximum frequency
until the load recovers. The thresholds can be adjusted based
on the frequency and degree of load fluctuations.

VII. EVALUATION

A. Methodology

We evaluate ReTail on an Intel Xeon Gold 6152 CPU
with 2 sockets, 22 cores each, and 188GB DDR4, running
Ubuntu 16.04 (kernel 4.14).6 We use the ACPI frequency
driver with the “userspace” governor [13] to allow user-defined
frequency settings ranging from 1GHz to 2.1GHz in 0.1GHz
increments. As frequencies can only be controlled on a per-
physical-core (not per-logical-core) basis, we turn off Hyper-
Threading [37] to show the maximum potential of ReTail.7
Applications are introduced in Table I. We use the open-loop
load generator provided by Tailbench as clients. Request inter-
arrival times follow an exponential distribution [32]. Client
and server threads run on socket0 and socket1, respectively.
In socket1, we reserve one core for the OS and one core for
the power manager. Both cores always run at the maximum
frequency. Applications run on the remaining 20 cores.

We use CPU Energy Meter [4] to measure the energy
consumption of the entire socket1, which includes energy
consumption from both the package and DRAM, and from
both the applications and the power management runtime.

We first evaluate single applications at constant loads, and
then evaluate application colocation that incurs online retrain-
ing. Each application is instantiated with 20 threads. We define
max load of each application as the maximum request-per-
second (RPS) under QoS when running on the default system.
100% of max load usually takes 60%-80% CPU utilization.
Then, we sweep the input load in 10% increments from 10%
to 100% of the max load. We run three test trials, each with
60s of warmup and 300s of execution, and record socket1’s
average power consumption across all trials. We compare with
two state-of-the-art latency-based power managers:

6We focus on single-node experiments, as ReTail is an intra-node controller.
ReTail can be installed on every node in a datacenter to manage the services
running on each node, so the conclusions would still hold for larger-scale
evaluation platforms. When interactions between nodes exist (e.g., for multi-
tier applications, or services with fanout), where the application only has an
end-to-end QoS target, the cluster scheduler which has global system visibility
is responsible for determining the per-node QoS target for each service, which
ReTail uses to manage power.

7When Hyper-Threading is enabled, the core frequency can be set to the
maximum of the target frequency of all the hyperthreads.

TABLE IV: Root Mean Square Error (RMSE) – msec.
Masstree ImgDNN Sphinx Xapian Moses Shore Silo

Rubik 0.05 0.9 2500 2.8 47.1 3.9 0.5
Gemini 0.03 0.8 217 3.6 3.6 2.2 0.2
ReTail 0.04 0.8 217 0.3 3.6 0.3 0.1

• Rubik [29] uses statistical modeling and the current queue
length to estimate the request latency distribution, and sets
each request’s frequency based on the estimated tail.

• Gemini [51] uses NN for request-level latency prediction.
However, Gemini is designed for search engines, and does
not include a generalizable process for selecting features
and adjusting the model to other services. Therefore, we
implement a generalized version of Gemini, which uses all
available features at request arrival as input features, and
follows the steps in Section V-A to tune the NN structure.

B. Power Consumption
Fig. 11a shows the average power consumption, and Ta-

ble IV shows the RMSE for each power manager.
Rubik uses the estimated latency distribution’s tail to calcu-

late the target frequency. Because the actual latency is usually
smaller than the tail, RMSE under Rubik is the largest, leading
to conservative frequency adjustment and power saving.

Gemini and ReTail reduce power over Rubik by leveraging
request features to perform request-level latency prediction,
improving prediction accuracy. Compared with Rubik, Gemini
has three major drawbacks:

1) Gemini’s power management algorithm drops all re-
quests that are predicted to miss the deadline. The percent-
age of dropped requests increases super-linearly with load
(Fig. 11b), reaching up to 16% (average 9.2%) at max load.8
Drop rate directly affects user experience [12], and should be
kept as low as possible. ReTail does not drop requests. Since
no work needs to be done for dropped requests and energy can
be saved naturally, ReTail sometimes consumes more power
than Gemini at high load. For instance, at RPS=20 for Sphinx,
Gemini drops 16% of requests, i.e., Gemini does roughly 16%
less work than ReTail, but consumes only 3.5% less power. In
most cases, Gemini consumes more power while also dropping
many requests. This is mainly due to two inefficiencies in
the power management algorithm. First, Gemini assumes that
requests are 100% compute-intensive; the target frequency is
calculated based on the estimated number of cycles and the
time budget. Ignoring memory cycles that cannot be changed
by adjusting CPU frequency, Gemini tends to overestimate
frequency, which saves less power. Second, Gemini’s two-
step DVFS adjusts almost every request’s frequency twice, one
low initial frequency and, later, one high frequency to meet
the deadline in case of prediction errors. As power increases
super-linearly with frequency, this consumes more power than
ReTail’s “one-step” approach that sets a single frequency for
each request most of the time. ReTail, instead, relies on the

8Due to the unique characteristic of the search workload that Gemini
targets, multiple requests collectively contribute to a search query; the search
aggregator can still form a response even with some dropped requests (though
with degraded search quality). However, this characteristic is not generalizable
to other LC applications.

9

CONCLUSIONS

▪ Leveraging request-level latency prediction to improve power efficiency

▪ ReTail feature selection
▪ ReTail latency prediction: a simple learning model is good enough!!
▪ ReTail power management

▪ Power saving up to 36% (average 9%) compared to the best state-of-the-art power
manager without QoS violations

▪ Future work: many potential uses of the prediction model!

20

Motivation• Characterization• ReTail • Evaluation • Conclusions

RETAIL:  
OPTING FOR LEARNING SIMPLICITY TO ENABLE QOS-AWARE

POWER MANAGEMENT IN THE CLOUD

Thanks!

Offline discussion: chenshuang0804@gmail.com

