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= Application-level resource management
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MOTIVATION C Sili:

= Application-level resource management

« Conventional resource managers manage each application as a whole

= Request-level resource management

* Make each request just meet QoS
» Assign high frequency to the core running long requests

» Assign low frequency to the core running short requests QoS Target
* Higher resource/power efficiency 1.0 .
° ° LL
= How to know if a request is 0.5
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PRIOR WORK CSl=:

 Adrenaline [MICRQO’15]: feature-driven

» E.g., if request type is SET, increase frequency
® Handpicked features for specific applications

® Cannot distinguish requests in the same category
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PRIOR WORK CSIE:

 Adrenaline [MICRQO’15]: feature-driven

» E.g., if request type is SET, increase frequency
® Handpicked features for specific applications

® Cannot distinguish requests in the same category

* Gemini [MICRO’20]: feature-driven, neural-network-based
» Predicted latency > QoS, increase frequency
® Handpicked features for websearch

Is it possible to predict request latency for a general LC application?
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LC APPLICATIONS CS|m:

Application Masstree ImgDNN Sphinx Xapian Moses Shore Silo

Domain Key-value store Image Speech Web search Real-time Database Database
recognition recognition translation (disk/SSD)  (in-memory)
Dataset <kg"‘f££";‘am MNIST [21] CMU AN4 [11] English Wikipedia arfiiﬁs?ﬂ TPC-C [16], 1 warehouse
QoS Target Ims Sms 4s 8ms 120ms Sms Ims
Median:Tail Ratio 0.84 0.81 0.36 0.27 0.26 0.25 0.19
90% <GET, key> . : A Spanish phrase 47% PAYMENT
Request 10% <PUT, key An [mage Wlt.h 2 Path to an A single-word term to be translated 45% NEW_ORDER
Value>, > handwritten digit audio file into English 4% ORDER_STATUS
4% STOCK_LEVEL
. . Little or no Little or no Predicted by Predicted by Predicted by Predicted by request and
Classification .. .. o L.
variation variation request features application features request features application features
Feature(s) N.A. N.A. Audio file size ~ Document count Word count  Request type, Item count, Rollback

= Investigate if it is possible to predict latency for 7 diverse LC applications
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Application Masstree ImgDNN Sphinx Xapian Moses Shore Silo

Domain Key-value store Image Speech Web search Real-time Database Database
recognition recognition translation (disk/SSD)  (in-memory)
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Value>, > handwritten digit audio file into English 4% ORDER_STATUS
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. . Little or no Little or no Predicted by Predicted by Predicted by Predicted by request and
Classification .. .. o L.
variation variation request features application features request features application features
Feature(s) N.A. N.A. Audio file size ~ Document count Word count  Request type, Item count, Rollback

= Investigate if it is possible to predict latency for 7 diverse LC applications
* Request latency = service time + queuing delay

* Find features that correlate with service time
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CHARACTERIZATION — FEATURE SPACE CS|ii:

= Request features
* Request size, request type, etc.

* Obtained at request arrival

= Application features
* Intermediate variables

* Obtained during request processing
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CHARACTERIZATION — REQUEST SIZE CSi=:
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CHARACTERIZATION — REQUEST SIZE C S|i:
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* Real-time translation
* Input request:
a Spanish phrase
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CHARACTERIZATION — REQUEST SIZE C S|i:
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« Speech recognition
* Input request:
a path to an audio file

* Real-time translation
* Input request:
a Spanish phrase
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CHARACTERIZATION — REQUEST TYPE CSI|E:

Shore Silo
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« Database (disk/in-memory)

* Input request: TPCC

« ORDER_STATUS and PAYMENT have little-to-no variation

« NEW_ORDER and STOCK LEVEL require further investigation

Cornell University Characterization
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CHARACTERIZATION — APPLICATION FEATURES CSm=:
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* Web search
* Input: a search term
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CHARACTERIZATION - SUMMARY C S [iii:
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CHARACTERIZATION - SUMMARY C S [iii:

= All the applications have intuitive features that correlate strongly with request
service time
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CHARACTERIZATION - SUMMARY C S [iii:

= All the applications have intuitive features that correlate strongly with request
service time

= The correlation relationship is very simple

= Classify applications into four categories
* Little-to-no-variation: IngDNN, Masstree
* Predicted by request features: Moses, Sphinx
* Predicted by application features: Xapian

 Combination: Shore, Silo
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CHARACTERIZATION - SUMMARY C S iz

= All the applications have intuitive features that correlate strongly with request
service time

= The correlation relationship is very simple

= Classify applications into four categories
* Little-to-no-variation: IngDNN, Masstree
* Predicted by request features: Moses, Sphinx
* Predicted by application features: Xapian

 Combination: Shore, Silo

We can build a latency prediction model
for a LC application!

Y2\ Cornell University
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RETAIL CS|m=:

ReTail: Request-level Latency Prediction to Reduce Tail Latency

QoS-aware power management for LC apps with request-level latency prediction

ReTail feature selection

* Selects the features that best correlate with request service time

* General to any LC application

ReTail latency prediction

* Linear regression

ReTail QoS-aware power management

* Decides the best frequency for each request

¢; Cornell University

Computer Systems Laboratory




RETAIL FEATURE SELECTION C S |ii:
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RETAIL FEATURE SELECTION C S [iii:

= Input: a log with
* User-provided-set of N samples
* A menu of features for each request sample
» Request features such as request type, request size, etc

» Potential intermediate variables in the application

— Leverage tracing and logging statements in the source code
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RETAIL FEATURE SELECTION C S [iii:

= Input: a log with
* User-provided-set of N samples

* A menu of features for each request sample
» Request features such as request type, request size, etc
» Potential intermediate variables in the application

— Leverage tracing and logging statements in the source code

= Qutput: the best features that correlate the most with request service time

= Selection procedure:

* Sort all the features in decreasing order of their correlation degree
» Numerical feature: Pearson correlation coefficient

» Categorical feature: the square of correlation ratio
* Select the first feature

* Select one more feature at a time until correlation degree doesn’t improve thereafter

Cornell University
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RETAIL LATENCY PREDICTION C S iz

Model Info Overhead Accuracy
#Layer #Neuron/layer #Epoch Batch size | Training Inference R? RMSE RMSE/QoS

Linear Regression N.A. 0.003s Sus 0.959 0.334ms 4.18%

Xapian NN-Gemini 5 128 15 32 9.7s 363us 0.973 0.270ms 3.38%
NN-Tuned 1 16 5 32 0.98s 107us 0.974 0.264ms 3.30%

Linear Regression N.A. 0.003s Sps 0.854 3.622ms 3.02%

Moses NN-Gemini 5 128 500 32 85.1s 514us 0.833 3.867ms 3.22%
NN-Tuned 1 4 400 1024 0.74s 258us 0.854 3.617ms 3.01%

Linear Regression N.A. 0.003s Spus 0.746  217.929ms 5.45%

Sphinx NN-Gemini 5 128 1000 32 36.15s 344 s 0.747  217.396ms 5.43%
NN-Tuned 3 128 700 32 15.39s 300us 0.747  217.474ms 5.43%

= Categorization and Linear regression

* Most relationships are categorical or linear
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RETAIL LATENCY PREDICTION C S iz
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CSi=:

RETAIL LATENCY PREDICTION

Model Info Overhead Accuracy
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» Small training and inference overhead

» Nearly the same accuracy as neural network
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RETAIL LATENCY PREDICTION

Model Info Overhead Accuracy
#Layer #Neuron/layer #Epoch Batch size | Training Inference R? RMSE RMSE/QoS
Linear Regression N.A. 0.003s Sus 0.959 0.334ms 4.18%
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= Categorization and Linear regression

* Most relationships are categorical or linear

* Comparison with neural networks

» Small training and inference overhead

» Nearly the same accuracy as neural network

* Explainable

Cornell University
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RETAIL POWER MANAGEMENT C S [ii:

* Find the minimum frequency to satisfy QoS
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RETAIL POWER MANAGEMENT C S [ii:

* Find the minimum frequency to satisfy QoS

User Worker
Requests  Cores
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MORE IN THE PAPER C S|

» ReTail feature selection
* Timeliness of all the selected features

* Correlation degree of multiple features

= ReTail latency prediction
* Training datasets
* Model retraining for model drift

» ReTail power management
* Prediction based on all queued and newly joined requests

* Feedback-control loop with latency monitoring

%'; Cornell University

s/ Computer Systems Laboratory



EVALUATION - METHODOLOGY C S

= Server: Intel Xeon Gold 6152 CPU @ 2.1GHz

* Power manager: one reserved core in socket 0
* LC app: socket 0

* Clients: socket 1
» Power measurement: CPU Energy Meter

* Measures energy consumption of socket 0

* Divides the execution time of the LC app
= ACPI-Freq: 1~2.1GHz in 0.1GHz steps

= Baselines:
* Rubik [MICRO15]: statistical model
* Gemini [MICRO’20]: NN-based, only considers request features

2\ Cornell University Evaluation

) Computer Systems Laboratory



EVALUATION CSIE:

®—® Rubik A—4A Gemini *—% ReTail 1 Rubik B Gemini EE ReTail
120 Masstree ImgDNN Sphinx Xapian Moses Shore Silo
100 ] : | i
%, 80 . i . I
= . _ | i
g 60 . i . i
8 . _ . |
40 . i . Il
20200 400 600 800 1000 24 48 72 96 12 4 8 12 16 20 2 4 6 8 10 200 400 600 8001000 3 6 9 12 15 200 400 600 800 1000
RPS (k) RPS (k) RPS RPS (k) RPS RPS (k) RPS (k)
(a) Power consumption under each power manager at various input loads.
<15 Masstree ImgDNN Sphinx Xapian Moses Shore Silo
T 10 '
S 0580"400°500 800 1000 24 4B 72 96 13 “ 4B {0 1620 ~ 2T E 810 “2007400 600 800 T000 3 6O 15 15 “200 400 600 800 1000

RPS (k) RPS (k) RPS RPS (k) RPS RPS (k) RPS (k)
(b) Percentage of dropped requests under each power manager at various input load.

Masstree

140

O—=NWHhUI®

O—=NWPIAAD

Mean Tail

Mean Talil Mean Talil i Mean Talil Mean Tail

(c) Mean and tail latency under each power manager at max load. The horizontal dotted lines are the QoS targets.
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EVALUATION CSIE:
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EVALUATION CSIE:
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= 12% and 9% power saving compared to Rubik and Gemini, respectively
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EVALUATION CSIE:
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(a) Power consumption under each power manager at various input loads.
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(b) Percentage of dropped requests under each power manager at various input load.

Mean Talil

(c) Mean and tail latency under each power manager at max load. The horizontal dotted lines are the QoS targets.
= 12% and 9% power saving compared to Rubik and Gemini, respectively

= No dropping of any requests = Meet QoS

Cornell University Evaluation
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EVALUATION - RMSE C Siii:

Masstree ImgDNN Sphinx Xapian Moses Shore Silo

Rubik 0.05 0.9 2500 2.8 47.1 39 0.5
Gemini 0.03 0.8 217 3.6 3.6 22 0.2
ReTail 0.04 0.8 217 0.3 3.6 0.3 0.1

= ReTail has the lowest Root-Mean-Square-Error (RMSE)

» ReTail outperforms Gemini’s more sophisticated NN model because
* NN’s high inference overhead delays frequency adjustments

* Gemini only considers request features, while ReTail also considers
application features

%'; Cornell University

Evaluation

s/ Computer Systems Laboratory



CONCLUSIONS CSI|mE:

= Leveraging request-level latency prediction to improve power efficiency

ReTail feature selection

ReTail latency prediction: a simple learning model is good enough!!

ReTail power management

Power saving up to 36% (average 9%) compared to the best state-of-the-art power
manager without QoS violations

= Future work: many potential uses of the prediction model!
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RETAIL:
OPTING FOR LEARNING SIMPLICITY TO ENABLE QOS-AWARE
POWER MANAGEMENT IN THE CLOUD

Thanks!

Offline discussion: chenshuang0804@gmail.com



